Cross-Electrophile Coupling of Benzyl Halides and Disulfides Catalyzed by Iron.

J Am Chem Soc

Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, California 90089-1661, United States.

Published: February 2024

Cross-electrophile couplings are influential reactions that typically require a terminal reductant or photoredox conditions. We discovered an iron-catalyzed reaction that couples benzyl halides with disulfides to yield thioether products in the absence of a terminal reductant and under photoredox conditions. The disclosed platform proceeds without sulfur-induced catalyst poisoning or the use of an exogenous base, supporting a broad scope and circumventing undesired elimination pathways. We applied the developed chemistry in a new mode of disulfide bioconjugation, drug synthesis, gram-scale synthesis, and product derivatization. Lastly, we performed mechanistic experiments to better understand the stereoablative reaction between two electrophiles. Disulfides and benzylic thioethers are imperative for biological and pharmaceutical applications but remain severely understudied in comparison to their ethereal and amino counterparts. Hence, we expect this platform of iron catalysis and the downstream applications to be of interest to the greater scientific community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910570PMC
http://dx.doi.org/10.1021/jacs.3c13984DOI Listing

Publication Analysis

Top Keywords

benzyl halides
8
halides disulfides
8
terminal reductant
8
reductant photoredox
8
photoredox conditions
8
cross-electrophile coupling
4
coupling benzyl
4
disulfides catalyzed
4
catalyzed iron
4
iron cross-electrophile
4

Similar Publications

We report herein a palladium-catalyzed distal alkylation of silyldienol and silyltrienol ethers of enones through coupling with activated halides to achieve new - and -alkylated motifs. Additionally, by employing propargyl bromides, synthetically useful linear allenes along with functionalized enones have been synthesized. Low-catalyst loading, and late-stage transformations of pharmaceutically relevant molecules further showcase the importance of the present protocol.

View Article and Find Full Text PDF

Photocatalytic Oxidative Coupling of Benzyl Alcohol and Benzylamine for Imine Synthesis Using Immobilized CsBiBr Perovskite.

Small

December 2024

LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, Porto, 4200-465, Portugal.

The oxidative cross-coupling of benzyl alcohol (BA) and benzylamine (BZA) is employed for the production of the corresponding imine, N-benzylidenebenzylamine (BZI), under visible light irradiation (light-emitting diodes (LE with λ = 417 nm) and mild reaction conditions. The cesium bismuth halide perovskites (CsBiBr, CBB) are synthesized by a one-step solution process as a sustainable alternative for the widely used Pb-halide perovskites. The CBB photocatalyst is immobilized on a polyethylene terephthalate (PET) structure designed explicitly for three-dimensional (3D) printing to operate in both batch and continuous modes to overcome the need for a final catalyst separation step.

View Article and Find Full Text PDF

Hydroalkylation of Vinylarenes by Transition-Metal-Free In Situ Generation of Benzylic Nucleophiles Using Tetramethyldisiloxane and Potassium tert-Butoxide.

Angew Chem Int Ed Engl

December 2024

Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada.

Hydrosilanes and Lewis bases are known to promote various reductive defunctionalizations, rearrangements, and silylation reactions, facilitated by enigmatic silicon/Lewis base-derived reactive intermediates. Despite the wide variety of transformations enabled by this reagent combination, no examples of intermolecular C(sp)-C(sp) forming reactions have been reported. In this work, we've identified 1,1,3,3-tetramethyldisiloxane (TMDSO) and KOBu as a unique reagent combination capable of generating benzylic nucleophiles in situ from styrene derivatives, which can subsequently react with alkyl halides to give a new C(sp)-C(sp) linkage via formal hydroalkylation.

View Article and Find Full Text PDF

Selective Ni(I)/Ni(III) Process for Consecutive Geminal C(sp)-C(sp) Bond Formation.

J Am Chem Soc

December 2024

School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.

Ni-catalyzed multicomponent cross-couplings have emerged as a powerful strategy for efficiently constructing complex molecular architectures from a diverse array of organic halides. Despite its potential, selectively forming multiple chemical bonds in a single operation, particularly in the realm of cross-electrophile coupling catalysis, remains a significant challenge. In this study, we have developed a consecutive open-shell reductive Ni catalysis, enabling the formation of two geminal C(sp)-C(sp) bonds from two stereoelectronically similar C(sp)-I reactants in conjunction with a methylene electrophile.

View Article and Find Full Text PDF

X-ray imaging utilizing organic-inorganic hybrid metal halide (OIHMH) glassy scintillators has garnered significant attention. But their inferior radioluminescence makes achieving rapid image acquisition difficult, posing a persistent challenge for dynamic imaging. Herein, organic phosphonium halide side-chain engineering is proposed, introducing bulky aromatic rings at the alkyl chain ends, to improve the radioluminescence of OIHMHs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!