Allostery in Protein Tyrosine Phosphatases is Enabled by Divergent Dynamics.

J Chem Inf Model

Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States.

Published: February 2024

Dynamics-driven allostery provides important insights into the working mechanics of proteins, especially enzymes. In this study, we employ this paradigm to answer a basic question: in enzyme superfamilies, where the catalytic mechanism, active sites, and protein fold are conserved, what accounts for the difference in the catalytic prowess of the individual members? We show that when subtle changes in sequence do not translate to changes in structure, they do translate to changes in dynamics. We use sequentially diverse PTP1B, TbPTP1, and YopH as representatives of the conserved protein tyrosine phosphatase (PTP) superfamily. Using amino acid network analysis of group behavior (community analysis) and influential node dominance on networks (eigenvector centrality), we explain the dynamic basis of the catalytic variations seen between the three proteins. Importantly, we explain how a dynamics-based blueprint makes PTP1B amenable to allosteric control and how the same is abstracted in TbPTP1 and YopH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144062PMC
http://dx.doi.org/10.1021/acs.jcim.3c01615DOI Listing

Publication Analysis

Top Keywords

protein tyrosine
8
translate changes
8
tbptp1 yoph
8
allostery protein
4
tyrosine phosphatases
4
phosphatases enabled
4
enabled divergent
4
divergent dynamics
4
dynamics dynamics-driven
4
dynamics-driven allostery
4

Similar Publications

Pathogenic activating mutations in the fibroblast growth factor receptor 3 (FGFR3) drive disease maintenance and progression in urothelial cancer. 10-15% of muscle-invasive and metastatic urothelial cancer (MIBC/mUC) are FGFR3-mutant. Selective targeting of FGFR3 hotspot mutations with tyrosine kinase inhibitors (e.

View Article and Find Full Text PDF

Taltirelin, an orally effective thyrotropin-releasing hormone analog, significantly improves motor impairments in rat models of Parkinson's disease (PD) and enhances dopamine release within the striatum. However, the underlying mechanism remains unclear. In this study, a variety of in vivo and in vitro methods, including transcriptomic analysis, were employed to elucidate the effects of Taltirelin on cellular composition and signaling pathways in the striatum of hemi-PD rats.

View Article and Find Full Text PDF

Background: Qi Li Qiang Xin (QLQX) capsule has a solid theoretical basis and clinical efficacy in the treatment of chronic heart failure; however, the underlying mechanisms remain obscure. This study was designed to determine the effect of the QLQX on the treatment of heart failure and delineate the underlying mechanisms via a nontargeted metabolomics and lipidomics approach.

Methods: A rat model of heart failure after myocardial infarction (MI) was established via permanent ligation of the anterior descending branch of the left coronary artery.

View Article and Find Full Text PDF

Elucidation of the interaction between apo-transferrin and indisulam via multi-spectroscopic techniques and molecular modeling.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China. Electronic address:

Apo-transferrin (apo-TRF) is a vital protein for maintaining iron balance in the body, which is produced by the liver. Indisulam (IDM) has been extensively used to treat cancer in clinical study and has been identified as a molecular glue. Iron imbalances in the body are believed to encourage the growth and spread of cancer cells.

View Article and Find Full Text PDF

Immunotherapy is one of the research hotspots in colorectal cancer field in recent years. The colorectal cancer patients with mismatch repair-deficient (dMMR) or high microsatellite instability (MSI-H) are the primary beneficiaries of immunotherapy. However, the vast majority of colorectal cancers are mismatch repair proficient (pMMR) or microsatellite stability (MSS), and their immune microenvironment is characterized by "cold tumors" that are generally insensitive to single immunotherapy based on immune checkpoint inhibitors (ICIs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!