While low-temperature Nuclear Magnetic Resonance (NMR) holds great promise for the analysis of unstable samples and for sensitizing NMR detection, spectral broadening in frozen protein samples is a common experimental challenge. One hypothesis explaining the additional linewidth is that a variety of conformations are in rapid equilibrium at room temperature and become frozen, creating an inhomogeneous distribution at cryogenic temperatures. Here, we investigate conformational heterogeneity by measuring the backbone torsion angle (Ψ) in Dihydrofolate Reductase (DHFR) at 105 K. Motivated by the particularly broad N chemical shift distribution in this and other examples, we modified an established NCCN Ψ experiment to correlate the chemical shift of N to Ψ. With selective N and C enrichment of Ile, only the unique I60-I61 pair was expected to be detected in C'-N correlation spectrum. For this unique amide, we detected three different conformation basins based on dispersed chemical shifts. Backbone torsion angles Ψ were determined for each basin: 114 ± 7° for the major peak and 150 ± 8° and 164 ± 16° for the minor peaks as contrasted with 118° for the X-ray crystal structure (and 118° to 130° for various previously reported structures). These studies support the hypothesis that inhomogeneous distributions of protein backbone torsion angles contribute to the lineshape broadening in low-temperature NMR spectra.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895356PMC
http://dx.doi.org/10.1073/pnas.2301053120DOI Listing

Publication Analysis

Top Keywords

backbone torsion
12
conformational heterogeneity
8
cryogenic temperatures
8
chemical shift
8
torsion angles
8
contribution protein
4
protein conformational
4
nmr
4
heterogeneity nmr
4
nmr lineshapes
4

Similar Publications

Development and biomechanical evaluation of a 3D printed analogue of the human lumbar spine.

3D Print Med

January 2025

Musculoskeletal Biomechanics Research Lab, Department of Mechanical Engineering, McGill University, 845 Sherbrooke St. W (163), Montréal, QC, H3A 0C3, Canada.

Background: There exists a need for validated lumbar spine models in spine biomechanics research. Although cadaveric testing is the current gold standard for spinal implant development, it poses significant issues related to reliability and repeatability due to the wide variability in cadaveric physiologies. Moreover, there are increasing ethical concerns with human dissection practices.

View Article and Find Full Text PDF

Coplanar Dimeric Acceptors with Bathochromic Absorption and Torsion-Free Backbones through Precise Fluorination Enabling Efficient Organic Photovoltaics with 18.63% Efficiency.

Adv Sci (Weinh)

January 2025

Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529199, P. R. China.

Giant dimeric acceptors (GDAs), a sub-type of acceptor materials for organic solar cells (OSCs), have garnered much attention due to the synergistic advantages of their monomeric and polymeric acceptors, forming a well-defined molecular structure with a giant molecular weight for high efficiency and stability. In this study, for the first time, two new GDAs, DYF-V and DY2F-V are designed and synthesized for OSC operation, by connecting one vinylene linker with the mono-/di-fluorinated end group on two Y-series monomers, respectively. After fluorination, both DYF-V and DY2F-V exhibit bathochromic absorption and denser packing modes due to the stronger intramolecular charge transfer effect and torsion-free backbones.

View Article and Find Full Text PDF

Background: Implant fixation is often the cornerstone of musculoskeletal surgical procedures performed to provide bony fixation and/or fusion. The aim of this study was to evaluate how different design features and manufacturing methods influence implant osseointegration and mechanical properties associated with fixation in a standardized model in cancellous bone of adult sheep.

Methods: We evaluated the performance of three titanium alloy implants: (A) iFuse-TORQ implant; (B) Fenestrated Sacroiliac Device; and (C) Standard Cancellous Bone Screw in the cancellous bone of the distal femur and proximal tibia in 8 sheep.

View Article and Find Full Text PDF

A Novel Dynamic Growth Rod Inducing Spinal Growth Modulation for the Correction of Spinal Deformities.

JOR Spine

March 2025

Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China.

Background: Growth rods are the gold standard for treating early-onset scoliosis (EOS). However, current treatments with growth rods do not optimize spinal growth in EOS patients, and frequent distraction surgeries significantly increase complications, imposing considerable economic and psychological burdens on patients. An improved growth rod is urgently required to address the need for dynamic growth and external regulation.

View Article and Find Full Text PDF

FlowPacker: Protein side-chain packing with torsional flow matching.

Bioinformatics

January 2025

Department of Molecular Genetics, University of Toronto, Ontario, M5S 3K3, Canada.

Motivation: Accurate prediction of protein side-chain conformations is necessary to understand protein folding, protein-protein interactions and facilitate de novo protein design.

Results: Here we apply torsional flow matching and equivariant graph attention to develop FlowPacker, a fast and performant model to predict protein side-chain conformations conditioned on the protein sequence and backbone. We show that FlowPacker outperforms previous state-of-the-art baselines across most metrics with improved runtime.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!