The adsorption of cationic peptide JM21 onto different mesoporous silica nanoparticles (MSNs) from an aqueous solution was studied as a function of pH. In agreement with the literature, the highest loading degrees could be achieved at pH close to the isoelectric point of the peptide where the peptide-peptide repulsion is minimum. However, mesopore size, mesopore geometry, and surface polarity all had an influence on the peptide adsorption in terms of both affinity and maximum loading at a given pH. This adsorption behavior could largely be explained by a combination of pH-dependent electrostatic interactions and confinement effects. It is demonstrated that hydrophobic interactions enhance the degree of peptide adsorption under pH conditions where the electrostatic attraction was absent in the case of mesoporous organosilica nanoparticles (MONs). The lower surface concentration of silanol groups for MON led to a lower level of peptide adsorption under optimum pH conditions compared to all-silica particles. Finally, the study confirmed the protective role of MSNs in preserving the biological activity of JM#21 against enzymatic degradation, even for large-pore MSNs, emphasizing their potential as nanocarriers for therapeutic peptides. By integrating experimental findings with theoretical modeling, this research elucidates the complex interplay of factors that influence peptide-silica interactions, providing vital insights for optimizing peptide loading and stabilization in biomedical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905996PMC
http://dx.doi.org/10.1021/acs.langmuir.3c03513DOI Listing

Publication Analysis

Top Keywords

peptide adsorption
12
mesoporous silica
8
silica nanoparticles
8
peptide
7
adsorption
5
confinement polarity
4
polarity effects
4
effects peptide
4
peptide packing
4
packing density
4

Similar Publications

Integrating Protein Language Model and Molecular Dynamics Simulations to Discover Antibiofouling Peptides.

Langmuir

January 2025

Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States.

Antibiofouling peptide materials prevent the nonspecific adsorption of proteins on devices, enabling them to perform their designed functions as desired in complex biological environments. Due to their importance, research on antibiofouling peptide materials has been one of the central subjects of interfacial engineering. However, only a few antibiofouling peptide sequences have been developed.

View Article and Find Full Text PDF

A novel strategy for cytochrome c selective recognition assisted with cucurbit[6]uril by host-guest interaction via N-terminal epitope imprinting and reversible addition-fragmentation chain transfer (RAFT) polymerization was developed. N-terminal nonapeptide of cytochrome c (GI-9) was used as the epitope template to achieve highly selective recognition of cytochrome c. As a common supramolecule in recent years, cucurbit[6]uril can encapsulate the butyrammonium group of lysine residue to capture the peptide and improve the corresponding spatial orientation by the host-guest interaction for GI-9 or cytochrome c recognition.

View Article and Find Full Text PDF

The emergence of multidrug-resistant (MDR) pathogens, coupled with the limited effectiveness of existing antibiotics in eradicating biofilms, presents a significant threat to global health care. This critical situation underscores the urgent need for the discovery and development of antimicrobial agents. Recently, peptide-derived antimicrobial nanomaterials have shown promise in combating such infections.

View Article and Find Full Text PDF

Ultrasensitive and high selectivity detection of fibrin using Y-shaped DNA-homing peptide doped probe on localized surface plasmon resonance platform.

Anal Chim Acta

January 2025

Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.

Background: Localized surface plasmon resonance (LSPR) sensor has drawn continuous attention to application of the detection of antibody, protein, virus, and bacteria. However, natural recognition molecules, such as antibody, which possess some properties, including low thermal stability, complicated operation and high price, uncontrollability of length and size and a tendency to accumulate easily on the surface of chip to reduce the sensitive of method. Furthermore, common blocking agents are not suitable for development of novel biosensors.

View Article and Find Full Text PDF

Improving the antimicrobial potential of the peptide CIDEM-501 through acylation: A computational approach.

Biochim Biophys Acta Biomembr

January 2025

Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana, 10400, Cuba. Electronic address:

Acylation is a common method used to modify antimicrobial peptides to enhance their effectiveness. It increases the interactions between the peptide and the bacterial cell membranes. However, acylation can also reduce the selectivity of the peptides by making them more active on eukaryotic membranes, which can lead to unintended toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!