Immune checkpoint blockade (ICB) therapy still suffers from insufficient immune response and adverse effect of ICB antibodies. Chemodynamic therapy (CDT) has been demonstrated to be an effective way to synergize with ICB therapy. However, a low generation rate of reactive oxygen species and poor tumor penetration of CDT platforms still decline the immune effects. Herein, a charge-reversal nanohybrid Met@BF containing both FeO and BaTiO nanoparticles in the core and Metformin (Met) on the surface was fabricated for tumor microenvironment (TME)- and ultrasound (US)-activated piezocatalysis-chemodynamic immunotherapy of cancer. Interestingly, Met@BF had a negative charge in blood circulation, which was rapidly changed into positive when exposed to acidic TME attributed to quaternization of tertiary amine in Met, facilitating deep tumor penetration. Subsequently, with US irradiation, Met@BF produced HO based on piezocatalysis of BaTiO, which greatly enhanced the Fenton reaction of FeO, thus boosting robust antitumor immune response. Furthermore, PD-L1 expression was inhibited by the local released Met to further augment the antitumor immune effect, achieving effective inhibitions for both primary and metastatic tumors. Such a combination of piezocatalysis-enhanced chemodynamic therapy and Met-mediated deep tumor penetration and downregulation of PD-L1 provides a promising strategy to augment cancer immunotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.3c11174 | DOI Listing |
iScience
January 2025
Department of Thoracic Surgery, Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China.
Lung cancer remains one of the most prevalent and lethal malignancies worldwide, characterized by high mortality rates due to its aggressive nature, metastatic potential, and drug resistance. Despite advancements in conventional therapies, their efficacy is often limited by systemic toxicity, poor tumor specificity, and the emergence of resistance mechanisms. Nanomedicine has emerged as a promising approach to address these challenges, leveraging the unique physicochemical properties of nanomaterials to enhance drug delivery, reduce off-target effects, and enable combination therapies.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Changchun University of Science and Technology, Changchun 130022, Jilin, China.
The cancer-associated fibroblasts (CAFs) in tumor stroma present substantial barriers to drug penetration, resulting in tumor resistance and progression. One promising strategy is to reprogram CAFs into a quiescent state, which necessitates novel approaches. Our study introduces a sequential treatment strategy using chitosan thermosensitive hydrogels loaded with α-Mangostin (α-M), a small molecule drug with antifibrotic properties, aimed at reprogramming CAFs within the breast cancer tumor microenvironment (TME).
View Article and Find Full Text PDFGene
January 2025
Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India. Electronic address:
Cancer is considered the second most common disease globally. In the past few decades, many approaches have been proposed for cancer treatment. One among those is targeted therapy using CRISPR-Cas system which plays an irreplaceable role in translational research through gene editing.
View Article and Find Full Text PDFBiomaterials
January 2025
State Key Laboratory of High-performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, PR China. Electronic address:
Sonodynamic therapy (SDT) shows substantial potentials in cancer treatment thanks to the deep tissue penetration of ultrasound. However, its clinical translation suffers from the potential damages to healthy tissues and the resistance of tumors, particularly from cancer stem-like cells (CSCs), to the ultrasound. To address these challenges, we designed a novel glutathione (GSH)-activated nanomedicine to simultaneously enhance the safety and efficacy of SDT by in situ regulating the generation of reactive oxygen species (ROS) and copper metabolism.
View Article and Find Full Text PDFJ Drug Target
January 2025
College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
Arsenic trioxide (ATO), the active ingredient in Chinese arsenic, effectively inhibits hepatocellular carcinoma (HCC) cell growth, but its clinical application is limited by the lack of a targeted delivery system. Phosphatidylinositol proteoglycan 3 (GPC3) is specifically expressed in HCC, and CPP44 is a cell-penetrating peptide that targets HCC cells. Here, we developed a liposome incorporating ATO with dual surface modifications of anti-GPC3 antibody and CPP44.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!