The performance of blue perovskite light-emitting diodes (PeLEDs) lags behind the green and red counterparts owing to high trap density and undesirable red shift of the electroluminescence spectrum under operation conditions. Organic molecular additives were employed as passivators in previous reports. However, most commonly have limited functions, making it challenging to effectively address both efficiency and stability issues simultaneously. Herein, we reported an innovatively dynamic in situ hydrolysis strategy to modulate quasi-2D sky-blue perovskites by the multifunctional passivator phenyl dichlorophosphate that not only passivated the defects but also underwent in situ hydrolysis reaction to stabilize the emission. Moreover, hydrolysis products were beneficial for low-dimensional phase manipulation. Eventually, we obtained high-performance sky-blue PeLEDs with a maximum external quantum efficiency (EQE) of 16.32% and an exceptional luminance of 5740 cd m. More importantly, the emission peak of devices located at 485 nm remained stable under different biases. Our work signified the significant advancement toward realizing future applications of PeLEDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.3c12131 | DOI Listing |
J Org Chem
January 2025
U.S. Process Chemistry, CMC Synthetics Platform, Sanofi, 350 Water Street, Cambridge, Massachusetts 02141, United States.
Imidates are versatile synthetic intermediates that contain ambiphilic reactivity, making them valuable pharmaceutically relevant synthons. Despite their extensive utility, imidates are typically generated in situ rather than isolated due to their inherent instability. This report details a systematic study that led to the discovery of an isolable imidate hydrogen chloride (HCl) salt that exhibits high tolerance to hydrolysis, thereby improving process control and facilitating downstream transformations.
View Article and Find Full Text PDFLangmuir
January 2025
College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.
Metallic Zn is a promising anode for high-safety, low-cost, and large-scale energy storage systems. However, it is strongly hindered by unstable electrode/electrolyte interface issues, including zinc dendrite, corrosion, passivation, and hydrogen evolution reactions. In this work, an in situ interface protection strategy is established by turning the corrosion/passivation byproducts (zinc hydroxide sulfates, ZHSs) into a stable hybrid protection layer.
View Article and Find Full Text PDFSmall
January 2025
Department of Neurosurgery, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
Hydrogen sulfide (HS) gas therapygarners significant attention for its potential to improve outcomes in various disease treatments. The quantitative control of HS release is crucial for effective the rapeutic interventions; however, traditional researchon HS therapy frequently utilizes static release models and neglects the dynamic nature of blood flow. In this study, we propose a novel slow-release in-situ HS release model that leverages the dynamic hydrolysis of HS donorswithin the bloodstream.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
Alkaline phosphatase (ALP) is a biomarker for many diseases, and monitoring its activity level is important for disease diagnosis and treatment. In this study, we used the microdroplet technology combined with an laser-induced polymerization method to prepare the Ag nanoparticle (AgNP) doped hydrogel microbeads (HMBs) with adjustable pore sizes that allow small molecules to enter while blocking large molecules. The AgNPs embedded in the hydrogel microspheres can provide SERS activity, improving the SERS signal of small molecules that diffuse to the AgNPs.
View Article and Find Full Text PDFBiomaterials
January 2025
Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA. Electronic address:
Direct pacing of the mid myocardium where re-entry originates can be used to prevent ventricular arrhythmias and circumvent the need for painful defibrillation or cardiac ablation. However, there are no pacing electrodes small enough to navigate the coronary veins that cross these culprit scar regions. To address this need, we have developed an injectable ionically conductive hydrogel electrode that can fill the epicardial coronary veins and transform them into flexible electrodes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!