Here the synthesis of magnetic aerogels from iron platinum and cobalt platinum nanoparticles is presented. The use of hydrazine monohydrate as destabilizing agent triggers the gelation directly from organic solution, and therefore a phase transfer to aqueous media prior to the gelation is not necessary. The aerogels were characterized through Transmission Electron Microscopy, Scanning Electron Microscopy, Powder X-Ray Diffraction Analysis and Argon Physisorption measurements to prove the formation of a porous network and define their compositions. Additionally, magnetization measurements in terms of hysteresis cycles at 5 K and 300 K (M-H-curves) as well as zero field cooled-field cooled measurements (ZFC-FC measurements) of the dried colloids and the respective xero- and aerogels were performed, in order to analyze the influence of the gelation process and the network structure on the magnetic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr05892a | DOI Listing |
Int J Biol Macromol
December 2024
College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:
As an essential material for manufacturing lithium batteries, the demand of lithium is increasing, which means novel extracting method from various lithium-containing solutions is necessary. Spiropyran molecules undergo a photoisomerization reaction under light, transitioning from a closed-ring form (colorless) to an open-ring form (colored), generating multiple coordination sites to form coordination bonds with metal ions. In this paper, a polyacrylamide/carboxymethyl chitosan composite aerogel grafted with photoresponsive spiropyragroups (FeO/CNTs@PAM/CS-SP), used for extracting lithium from solutions, was prepared by dual cross-linking and vacuum freeze-drying.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Advanced Materials for Facility Agriculture, Ministry of Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
Given the limitations of single-function electromagnetic wave-absorbing materials (EWAMs) in meeting the evolving demands of complex usage scenarios, there is a growing need for structure-function integrated composites that offer a combination of microwave absorption, human monitoring, and thermal insulation. This study successfully synthesized two-dimensional (2D) TiCT MXene via selective etching of Al from the TiAlC MAX phase. By introducing MXene into a composite of hydroxylated CoFeO nanoparticles (-CFO NPs) and bacterial nanocellulose (BNC) to modulate the electromagnetic performance of the EWAMs.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania.
Iron oxide nanoparticles were synthesized using a vortex microfluidic system and subsequently functionalized with a primary shell of salicylic acid, recognized for its ability to increase the stability and biocompatibility of coated materials. In the second stage, the vortex platform was placed in a magnetic field to facilitate the growth and development of a porous silica shell. The selected drug for this study was micafungin, an antifungal agent well regarded for its effectiveness in combating fungal infections and identified as a priority compound by the World Health Organization (WHO).
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China.
Humans possess the remarkable ability to perceive the intricate world by integrating multiple senses. However, the challenge of enabling humanoid robots to achieve multimodal sensing and fine recognition of metallic materials persists. In this study, we propose a flexible tactile sensor that mimics the sensory patterns of human skin, which is assembled by a flexible electromagnetic coil that is engraved on the surface of a polyimide substrate and porous MXene/CNT aerogel.
View Article and Find Full Text PDFAdv Mater
December 2024
Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
Current strategies for constructing sparse nanostructures for fabricating superblacks are only suitable for a few light-absorbing materials, severely limiting their applications. Herein, ultra-low reflective silica aerogels with ultra-high light transparency are used as solid smokes to individually or simultaneously suspend at least 100 species of light-absorbing nanoparticles with a volume fraction as low as 0.005%, for creating > 100 superblacks in practice and one billion superblacks in theory if taken permutation and combination among these 0D, 1D, or 2D nanoparticles into account.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!