Carbon-based materials that process a wide bandgap, high mechanical performance, thermal stability and adjustable characteristics are in high demand. Auxeticity is one of the factors that helps enhances the mechanical performance. Based on this concept, two stable layered carbon-based materials, namely α-CO and β-CO, are proposed. A new mechanism (multi-directional negative Poisson's ratio (NPR) effect) is induced, which is attributed to the interaction of modified p orbitals between interfacial layers. This effect introduces high mechanical properties into materials. Besides, all layered materials are ultrawide bandgap semiconductors, which endows them comparable dielectric properties to those of diamond. Furthermore, α-BK-CO would maintain its configuration over 2000 K, thereby guaranteeing extremely high thermodynamic stability. So far, these advantages suggested that these carbon-based layer materials could be used in nanoelectronics, especially in electromechanical devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr04849g | DOI Listing |
Nanomaterials (Basel)
December 2024
Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain.
The separation of oxygen (O) and nitrogen (N) from air is a process of utmost importance nowadays, as both species are vital for numerous fundamental processes essential for our development. Membranes designed for their selective molecule separation have become the materials of choice for researchers, primarily due to their ease of use. The present study proposes grazynes, 2D carbon-based materials consisting of and C atoms, as suitable membranes for separating O and N from air.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
This review examines recent advances in surface-enhanced Raman spectroscopy (SERS) for urinary metabolite analysis, focusing on the development and application of noble metal nanohybrids. We explore the diverse range of hybrid materials, including carbon-based, metal-organic-framework (MOF), silicon-based, semiconductor, and polymer-based systems, which have significantly improved SERS performance for detecting key urinary biomarkers. The principles underlying SERS enhancement in these nanohybrids are discussed, elucidating both electromagnetic and chemical enhancement mechanisms.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, PR China.
Heteroatom-doped carbon materials are widely used to improve the electrocatalytic oxidation of methanol; however, the underlying mechanisms driving this enhancement remain poorly understood. A major challenge lies in developing non-doped carbon supports with tunable intrinsic defect types tailored for metal-based catalysts. In this study, we synthesize a series of ordered mesoporous carbon (OMC) supports with adjustable edge defect densities by varying roasting temperatures and employing a zinc (Zn) evaporation strategy to systematically investigate the impact of edge defects on methanol oxidation reaction (MOR) performance.
View Article and Find Full Text PDFACS Nano
December 2024
College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, P. R. China.
An accurate assessment of the electrodeposition mechanism is essential for evaluating the electrochemical stability and reversibility of the metal anodes. Multiple strategies aimed at uniform Zn deposition have been extensively reported, yet it is challenging to clarify the Zn crystal growth regularity and activity due to the obscured physicochemical properties of as-deposited Zn. Herein, we present a protocol for elucidating the controlled epitaxial growth process of Zn crystals and quantifying their surface electrochemical activity using scanning electrochemical microscopy.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China. Electronic address:
As a novel carbon-based material with two-dimensional (2D) characteristics, graphdiyne (GDY) shows great potential in constructing active catalytic sites due to its distinctive atomic configuration and sp/sp conjugated hybrid two-dimensional networks. In this study, the layered GDY was synthesized using the ball milling method, and ZnCdS/Graphdiyne/NiO (ZnCdS/GDY/NiO) composite was synthesized by in-situ composite and physical mixing method. The prepared ZnCdS/GDY/NiO has good photostability outstanding performance in photocatalytic hydrogen production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!