Studying the effect of morphology on the circularly polarized luminescence (CPL) of chiral molecular materials is important for the development of CPL-active materials for applications. Herein, we report that the morphology of Gd(NO)/-,-AnempH [AnempH = (1-anthrylethylamino)methylphosphonic acid] assemblies can be controlled by solvent modulation to form spiral bundles Gd(-,-AnempH)·2HO (R-,S-1), crystals Gd(-,-AnempH)·2HO (R-,S-2) and spindle-shaped particles Gd(-,-AnempH)·3HO·0.5DMF (R-,S-3) with similar chain structures. Interestingly, R-,S-1 are CPL active and show the highest value of dissymmetric factor among the three pairs of enantiomers (|| = 2.1 × 10), which is 2.8 times larger than that of R-,S-2, while R-,S-3 are CPL inactive with || ≈ 0. This work provides a new route to control the morphology of chiral coordination polymers and improve their CPL performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3dt03735e | DOI Listing |
J Chem Theory Comput
January 2025
Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy.
The charge transfer (CT) reactions in nucleic acids are crucial for genome damage and repair and nanoelectronics using DNA as a molecular conductor. Previous experimental and theoretical works underlined the significance of nucleic acid structural dynamics on CT kinetics, requiring models that incorporate the dynamics of the nucleic acid, solvents, and counterions. Here, we investigated hole transfer kinetics in poly adenine single and double strands at various temperatures and the rate enhancement due to adenine-to-7-deazaadenine mutation by means of a QM/MM approach.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.
Background: Reversible post-translational modifications, phosphorylation and dephosphorylation, on tau protein play a critical role in the microtubule (MT) modulation. However, abnormal tau phosphorylation, which occurs in tauopathies such as Alzheimer's disease (AD), causes the dissociation of tau from MTs. The dissociated tau then aggregates into sequent forms from soluble oligomers to paired helical filaments (PHF), and insoluble neurofibrillary tangles (NFTs), a hallmark of AD.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Technische Universitat Dresden, Inorganic Chemistry I, GERMANY.
The catalytic potential of flexible metal-organic frameworks (MOFs) remains underexplored, particularly in solution-phase reactions. This study employs MIL-53(Cr), a prototypical "breathing" MOF capable of structural adaptation via pore size modulation, as a photocatalyst for the dehalogenation of aryl halides. Powder X-ray diffraction and pair distribution function analyses reveal that organic solvents influence pore opening, while substrates and products dynamically adjust the framework configuration during catalysis.
View Article and Find Full Text PDFInorg Chem
January 2025
Zhejiang Carbon Neutral Innovation Institute and Moganshan Institute of ZJUT at Deqing, Zhejiang University of Technology, Hangzhou 310014, China.
The electrooxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) has been deeply investigated. However, developing a durable electrocatalyst for fast production of FDCA at low potentials remains a challenge. Herein, we report NiP-NiSe heterostructure nanosheet arrays as efficient electrocatalysts for HMF electrooxidation.
View Article and Find Full Text PDFChemistry
December 2024
Technological University Dublin, Institute of Polymers, Kevin Street, Dublin 8, Dublin, IRELAND.
Donor-acceptor BODIPY dyads, functionalized at the 2 and 6 positions with benzyl ester (BDP-DE) or carboxylic acid (BDP-DA) groups, were synthesized and characterized for their optoelectronic properties. The introduction of carbonyl groups increased the reduction potential of the BODIPY core by 0.15-0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!