This perspective delves into the integration of artificial intelligence (AI) to enhance early diagnosis in hidradenitis suppurativa (HS). Despite significantly impacting Quality of Life, HS presents diagnostic challenges leading to treatment delays. We present a viewpoint on AI-powered clinical decision support system designed for HS, emphasizing the transformative potential of AI in dermatology. HS diagnosis, primarily reliant on clinical evaluation and visual inspection, often results in late-stage identification with substantial tissue damage. The incorporation of AI, utilizing machine learning and deep learning algorithms, addresses this challenge by excelling in image analysis. AI adeptly recognizes subtle patterns in skin lesions, providing objective and standardized analyses to mitigate subjectivity in traditional diagnostic approaches. The AI integration encompasses diverse datasets, including clinical records, images, biochemical and immunological data and OMICs data. AI algorithms enable nuanced comprehension, allowing for precise and customized diagnoses. We underscore AI's potential for continuous learning and adaptation, refining recommendations based on evolving data. Challenges in AI integration, such as data privacy, algorithm bias, and interpretability, are addressed, emphasizing the ethical considerations of responsible AI deployment, including transparency, human oversight, and striking a balance between automation and human intervention. From the dermatologists' standpoint, we illustrate how AI enhances diagnostic accuracy, treatment planning, and long-term follow-up in HS management. Dermatologists leverage AI to analyze clinical records, dermatological images, and various data types, facilitating a proactive and personalized approach. AI's dynamic nature supports continuous learning, refining diagnostic and treatment strategies, ultimately reshaping standards of care in dermatology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.23736/S2784-8671.23.07829-5 | DOI Listing |
Radiol Med
January 2025
Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
Purpose: To develop an artificial intelligence (AI) algorithm for automated measurements of spinopelvic parameters on lateral radiographs and compare its performance to multiple experienced radiologists and surgeons.
Methods: On lateral full-spine radiographs of 295 consecutive patients, a two-staged region-based convolutional neural network (R-CNN) was trained to detect anatomical landmarks and calculate thoracic kyphosis (TK), lumbar lordosis (LL), sacral slope (SS), and sagittal vertical axis (SVA). Performance was evaluated on 65 radiographs not used for training, which were measured independently by 6 readers (3 radiologists, 3 surgeons), and the median per measurement was set as the reference standard.
BMC Bioinformatics
January 2025
School of Computer Science and Technology, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, China.
Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.
View Article and Find Full Text PDFBMC Nurs
January 2025
Nursing Department, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar.
Background: Artificial Intelligence (AI) is increasingly applied in healthcare to boost productivity, reduce administrative workloads, and improve patient outcomes. In nursing, AI offers both opportunities and challenges. This study explores nurses' perspectives on implementing AI in nursing practice within the context of Jordan, focusing on the perceived benefits and concerns related to its integration.
View Article and Find Full Text PDFBMC Public Health
January 2025
Statistics, Brigham Young University, Provo, 84602, Utah, USA.
Background: Bullying, encompassing physical, psychological, social, or educational harm, affects approximately 1 in 20 United States teens aged 12-18. The prevalence and impact of bullying, including online bullying, necessitate a deeper understanding of risk and protective factors to enhance prevention efforts. This study investigated the key risk and protective factors most highly associated with adolescent bullying victimization.
View Article and Find Full Text PDFSci Rep
January 2025
Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland.
Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!