The study of protein subcellular localization, dynamics, and regulation in live cells has been profoundly transformed by the advent of techniques that allow the tagging of endogenous genes to produce fluorescent fusion proteins. These methods enable researchers to visualize protein behavior in real time, providing valuable insights into their functions and interactions within the cellular environment. Many current gene tagging studies employ a two-step process where visible markers, such as eye color changes, are used to identify genetically modified organisms in the first step, and the visible marker is excised in the second step. Here, we present a one-step protocol to perform precise and rapid endogenous gene tagging in Drosophila melanogaster, which enables screening for engineered lines without the visible eye marker, offering a significant advantage over past methods. To screen for successful gene-tagging events, we employ a PCR-based technique to genotype individual flies by analyzing a small segment from their middle leg. Flies that pass the screening criteria are then used to produce stable stocks. Here, we detail the design and construction of CRISPR editing plasmids and methods for screening and confirmation of engineered lines. Together, this protocol improves the efficiency of endogenous gene tagging in Drosophila significantly and enables studies of cellular processes in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/64729 | DOI Listing |
Int J Mol Sci
January 2025
Department of Life Sciences, Ben Gurion University of the Negev, Beer-Sheva 8410501, Israel.
Phenotypic variability in isogenic bacterial populations is a remarkable feature that helps them cope with external stresses, yet it is incompletely understood. This variability can stem from gene expression noise and/or the unequal partitioning of low-copy-number freely diffusing proteins during cell division. Some high-copy-number components are transiently associated with almost immobile large assemblies (hyperstructures) and may be unequally distributed, contributing to bacterial phenotypic variability.
View Article and Find Full Text PDFMicroorganisms
January 2025
Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany.
Background: Cow's milk represents an important protein source. Here, especially casein proteins are important components, which might be a promising source of alternative protein production by microbial expression systems. Nevertheless, caseins are difficult-to-produce proteins, making heterologous production challenging.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Carrer de les Sitges, s/n, 08193 Bellaterra, Catalonia, Spain.
The introduction of heterologous pathways into microbial cell compartments offers several potential advantages, including increasing enzyme concentrations and reducing competition with native pathways, making this approach attractive for producing complex metabolites like fatty acids and fatty alcohols. However, measuring subcellular concentrations of these metabolites remains technically challenging. Here, we explored 3-hydroxypropionic acid (3-HP), readily quantifiable and sharing the same precursors-acetyl-CoA, NADPH, and ATP-with the above-mentioned products, as a reporter metabolite for peroxisomal engineering in the yeast .
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093.
The conserved MAP3K DLKs are widely known for their functions in synapse formation, axonal regeneration and degeneration, and neuronal survival, notably under traumatic injury and chronic disease conditions. In contrast, their roles in other neuronal compartments are much less explored. Through an unbiased forward genetic screening in C.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
College of Plant Sciences, Jilin University, Changchun 130062, China.
, the grey mould fungus affecting over 1400 plant species, employs infection cushion (IC), a branched and claw-like structure formed by mycelia, as a critical strategy to breach host surface barriers. However, the molecular mechanisms underlying IC formation remain largely unexplored. In this study, we utilized a forward genetics approach to establish a large T-DNA tagged population of , which contained 14,000 transformants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!