Theoretical study of the O(3P) + CN(X2Σ+) → CO(X1Σ+) + N(2D)/N(4S) reactions.

J Chem Phys

Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA.

Published: February 2024

The barrierless exothermic reactions between atomic oxygen and the cyano radical, O(3P) + CN(X2Σ+) → CO(X1Σ+) + N(2D)/N(4S), play a significant role in combustion, astrochemistry, and hypersonic environments. In this work, their dynamics and kinetics are investigated using both wave packet (WP) and quasi-classical trajectory (QCT) methods on recently developed potential energy surfaces of the 12A', 12A,″ and 14A″ states. The product state distributions in the doublet pathway obtained with the WP method for a few partial waves show extensive internal excitation in the CO product. This observation, combined with highly oscillatory reaction probabilities, signals a complex-forming mechanism. The statistical nature of the reaction is confirmed by comparing the WP results with those from phase space theory. The calculated rate coefficients using the WP (with a J-shifting approximation) and QCT methods exhibit agreement with each other near room temperature, 1.77 × 10-10 and 1.31 × 10-10 cm3 molecule-1 s-1, but both are higher than the existing experimental results. The contribution of the quartet pathway is small at room temperature due to a small entrance channel bottleneck. The QCT rate coefficients are further compared with experimental results above 3000 K, and the agreement is excellent.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0188867DOI Listing

Publication Analysis

Top Keywords

o3p cnx2Σ+
8
cnx2Σ+ →
8
→ cox1Σ+
8
cox1Σ+ n2d/n4s
8
qct methods
8
rate coefficients
8
room temperature
8
theoretical study
4
study o3p
4
n2d/n4s reactions
4

Similar Publications

Unveiling ultraviolet photodissociation dynamics of SiO from a laser-ablated supersonic beam with time-sliced ion velocity imaging.

Phys Chem Chem Phys

December 2024

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai, 200438, China.

SiO is a widespread molecule found in interstellar space, and its dissociation requires a substantial input of energy due to its high bond energy of 8.34 eV. The present study initially demonstrated across a broad range of ultraviolet (UV) wavelengths (243-288 nm) the one-photon and two-photon dissociation of SiO molecules, which were generated from the laser ablation of a Si rod colliding with an oxygen molecular beam.

View Article and Find Full Text PDF

Correction to: Formation of phosphorus monoxide through the P(S) + O(Σ) → O(P) + PO(Π) reaction.

J Mol Model

December 2024

Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG, Av. Amazonas 5253, Belo Horizonte, Minas Gerais, 30421-169, Brazil.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the reactions between nitrogen dioxide (NO) with atomic oxygen (O) and atomic carbon (C) at low temperatures using a supersonic flow reactor.
  • The reactions were monitored using different detection methods, revealing that the rate of O + NO reactions increases significantly as temperature decreases, while C + NO reactions are studied for the first time.
  • Simulations suggest that while gas-phase NO abundances are low in dense interstellar clouds, higher levels of NO may be found on interstellar dust grains, indicating potential for detection in warmer areas.
View Article and Find Full Text PDF

The merging of the electronic structure calculations and crossed beam experiments expose the reaction dynamics in the tin (Sn, P) - molecular oxygen (O, XΣ-g) system yielding tin monoxide (SnO, XΣ) along with ground state atomic oxygen O(P). The reaction can be initiated on the triplet and singlet surfaces addition of tin to the oxygen atom leading to linear, bent, and/or triangular reaction intermediates. On both the triplet and singlet surfaces, formation of the tin dioxide structure is required prior to unimolecular decomposition to SnO(XΣ) and O(P).

View Article and Find Full Text PDF

Fully quantal description of combined internal conversion and intersystem crossing processes in the smallest Criegee intermediate CHOO.

Phys Chem Chem Phys

September 2024

Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, INF 229, D-69120 Heidelberg, Germany.

A quantal description of nuclear motion using coupled fifteen-state potential energy and spin-orbit coupling surfaces for studying the photodissociation of CHOO to HCO(XA) + OD and HCO(XA) + OP channels is presented. For the evaluation of surfaces, multireference electronic wave functions are employed. For the fully quantal description of the nuclear motion, we diabatize the PESs of the two and four lowest excited singlet and triplet states, respectively, within the three sets of vibronically coupled states, (BA', CA'), (aA', bA') and (aA'', bA''), employing the diabatization by ansatz method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!