Background: Salinity is one of the major abiotic stresses that limit the production and yields of agricultural crops worldwide.
Objectives: In order to identify key barley genes under salinity stress, the available metadata were examined by two methods of Cytoscape and R software. Next, the hub expression of the selected gene was evaluated under different salinity stress treatments and finally, this gene was cloned into cloning and expression vector and recombinant plasmid was made.
Materials And Methods: In this study, we extracted salinity stress tolerant genes from several kinds of literature and also microarray data related to barley under salinity conditions from various datasets. The list of genes related to literature analyzed using string and Cytoscape. The genes from the datasets were first filtered and then the hub genes were identified by Cytoscape and R methods. Next, these hub genes were analyzed for the promoter.
Results: Ten hub genes were selected and their promoters were analyzed, the -element of which was often cis-acting regulatory element involved in the methyl jasmonate -responsiveness, common -acting element in promoter and enhancer regions and MYBHv1 binding site. Finally, the sedoheptulose-1,7-bisphosp gene (), which had the highest interaction in both gene lists and both types of gene networks, was selected as hub gene. Next, the expression of gene was examined in two variety of Youssef variety (salt tolerant) and Fajr variety (salt sensitive) under salinity stress (NaCl 100mM) at 0 (control), 3, 6, 12 and 24 hours after stress. The results showed that the expression of this gene increased with increasing the duration of stress in both varieties. Comparison of the two varieties showed that the expression of gene in the tolerant genotype was twice as high as sensitive. Finally, gene as a key gene for salinity stress was cloned in both cloning (pTG19) and expression (pBI121) vectors.
Conclusions: According to our results, SBPase gene increased growth and photosynthesis in barley under various abiotic stresses, therefore, over-expression of this gene in barley is recommended to produce plants resistant to abiotic stresses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858358 | PMC |
http://dx.doi.org/10.30498/ijb.2023.343700.3389 | DOI Listing |
Plant Physiol Biochem
January 2025
Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye. Electronic address:
Salinization is a significant global issue causes irreversible damage to plants by reducing osmotic potential, inhibiting seed germination, and impeding water uptake. Seed germination, a crucial step towards the seedling stage is regulated by several hormones and genes, with the balance between abscisic acid and gibberellin being the key mechanism that either promotes or inhibits this process. Additionally, mucilage, a gelatinous substance, is known to provide protection against drought, herbivory, soil adhesion, and seed sinking.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
Z. armatum is an economically valued crop known for its rich aroma and medicinal properties. This study identified 45 members of the SQUAMOSA-PROMOTER BINDING PROTEIN LIKE (SPL) gene family in the genome of Z.
View Article and Find Full Text PDFJ Hand Surg Am
January 2025
Department of Orthopaedic Surgery, University of Utah Hospital, Salt Lake City, UT. Electronic address:
Purpose: Controversy exists regarding the optimal imaging modality (magnetic resonance imaging, ultrasound, stress radiographs) for identification of patients with grossly unstable thumb metacarpophalangeal (MCP) ulnar collateral ligament (UCL) injuries or Stener lesions. We characterize a radiographic sign for this purpose. The "displaced fleck sign" is a small avulsion fracture from the ulnar proximal phalanx base that is displaced proximal to the MCP joint line.
View Article and Find Full Text PDFEcol Appl
January 2025
Ecology and Evolutionary Biology Department, University of California, Santa Cruz, Santa Cruz, California, USA.
Large-scale restoration projects are an exciting and often untapped opportunity to use an experimental approach to inform ecosystem management and test ecological theory. In our $10M tidal marsh restoration project, we installed over 17,000 high marsh plants to increase cover and diversity, using these plantings in a large-scale experiment to test the benefits of clustering and soil amendments across a stress gradient. Clustered plantings have the potential to outperform widely spaced ones if plants alter conditions in ways that decrease stress for close neighbors.
View Article and Find Full Text PDFFront Microbiol
January 2025
National Bureau of Agriculturally Important Microorganism, Mau, India.
Non-halophytic plants are highly susceptible to salt stress, but numerous studies have shown that halo-tolerant microorganisms can alleviate this stress by producing phytohormones and enhancing nutrient availability. This study aimed to identify and evaluate native microbial communities from salt-affected regions to boost black gram () resilience against salinity, while improving plant growth, nitrogen uptake, and nodulation in saline environments. Six soil samples were collected from a salt-affected region in eastern Uttar Pradesh, revealing high electrical conductivity (EC) and pH, along with low nutrient availability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!