The emergence of artificial general intelligence (AGI) is transforming radiation oncology. As prominent vanguards of AGI, large language models (LLMs) such as GPT-4 and PaLM 2 can process extensive texts and large vision models (LVMs) such as the Segment Anything Model (SAM) can process extensive imaging data to enhance the efficiency and precision of radiation therapy. This paper explores full-spectrum applications of AGI across radiation oncology including initial consultation, simulation, treatment planning, treatment delivery, treatment verification, and patient follow-up. The fusion of vision data with LLMs also creates powerful multimodal models that elucidate nuanced clinical patterns. Together, AGI promises to catalyze a shift towards data-driven, personalized radiation therapy. However, these models should complement human expertise and care. This paper provides an overview of how AGI can transform radiation oncology to elevate the standard of patient care in radiation oncology, with the key insight being AGI's ability to exploit multimodal clinical data at scale.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857824 | PMC |
http://dx.doi.org/10.1016/j.metrad.2023.100045 | DOI Listing |
J Invest Surg
January 2025
Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
Background: The prognostic value of tumor regression grade (TRG) after neoadjuvant chemoradiotherapy for rectal cancer is inconsistent in the literature. Both TRG and post-therapy lymph node (ypN) status could reflect the efficacy of neoadjuvant therapy. Here, we explored whether TRG combined with ypN status could be a prognostic factor for MRI-based lymph node-positive (cN+) rectal cancer following neoadjuvant chemoradiotherapy.
View Article and Find Full Text PDFInt J Med Sci
January 2025
Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan.
Effective therapies for cognitive impairments induced by brain irradiation are currently lacking. This study investigated the therapeutic potential of hyperbaric oxygen therapy (HBOT) for radiation-induced brain injury in a randomized controlled experimental model using adult male Wistar rats. Adult male Wistar rats were divided into four experimental groups: 0 Gy whole brain radiotherapy (WBRT) with normal baric air (NBA) treatment, 0 Gy WBRT with HBOT, 10 Gy WBRT with NBA, and 10 Gy WBRT with HBOT.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
Rechallenge with immune checkpoint inhibitors (ICI) shows promise in various cancers, but data in esophageal squamous cell carcinoma (ESCC) is limited. This study aimed to evaluate the efficiency and safety of ICI rechallenge in ESCC. This multicenter study analyzed ESCC patients rechallenged with ICI from January 2020 to March 2023 across two medical institutions.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Pharmacology, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, China.
Longikaurin A (LK-A), a naturally occurring ent-kaurane diterpenoid, has been identified as a promising anti-cancer agent. This study aims to elucidate the anti-tumorigenic effects of LK-A on oral squamous cell carcinoma (OSCC) cells and to unravel its underlying mechanisms. assays, including CCK-8 and EdU, were performed to assess cell viability and proliferation.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, 33302, Taiwan.
Previous studies revealed that tumor-associated macrophages/microglia (TAMs) promoted glioma invasiveness during tumor progression and after radiotherapy. However, the communication of TAMs with tumor cells remains unclear. This study aimed to examine the role of small extracellular vesicles (sEVs) derived from TAMs in TAMs-mediated brain tumor invasion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!