A prognostic model utilizing CT radiomics, radiological, and clinical features was developed and validated in this study to predict an objective response to initial transcatheter arterial chemoembolization with drug-eluting beads (DEB-TACE) for hepatocellular carcinoma (HCC). Between January 2017 and December 2022, the baseline clinical characteristics and preoperative and postoperative follow-up imaging data of 108 HCC patients who underwent the first time treatment of DEB-TACE were analyzed retrospectively. The training group ( = 86) and the validation group ( = 22) were randomly assigned in an 8:2 ratio. By logistic regression in machine learning, radiomics, and clinical-radiological models were constructed separately. Finally, the integrated model construction involved the integration of both radiomics and clinical-radiological signatures. The study compared the integrated model with radiomics and clinical-radiological models using calibration curves, receiver operating characteristic (ROC) curves, and decision curve analysis (DCA). The objective response rate observed in a group of 108 HCC patients who received initial DEB-TACE treatment was found to be 51.9%. Among the three models, the integrated model exhibited superior predictive accuracy in both the training and validation groups. The training group resulted in an area under the curve (AUC) of 0.860, along with sensitivity and specificity values of 0.650 and 0.913, respectively. Based on the findings from the validation group, the AUC was estimated to be 0.927. Additionally, it was found that values of sensitivity and specificity were 0.875 and 0.833, respectively. In the validation group, the AUC of the integrated model showed a significant improvement when contrasted to the clinical-radiological model ( = 0.042). Nevertheless, no significant distinction was observed in the AUC when comparing the integrated model with the radiomics model ( = 0.734). The DCA suggested that the integrated model demonstrates advantageous clinical utility. The integrated model, which combines the CT radiomics signature and the clinical-radiological signature, exhibited higher predictive efficacy than either the radiomics or clinical-radiological models alone. This suggests that during the prediction of the objective responsiveness of HCC patients to the first DEB-TACE treatment, the integrated model yields superior outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854007 | PMC |
http://dx.doi.org/10.3389/fphar.2024.1315732 | DOI Listing |
J Osteopath Med
January 2025
Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA.
Context: Point-of-care ultrasound (POCUS) has diverse applications across various clinical specialties, serving as an adjunct to clinical findings and as a tool for increasing the quality of patient care. Owing to its multifunctionality, a growing number of medical schools are increasingly incorporating POCUS training into their curriculum, some offering hands-on training during the first 2 years of didactics and others utilizing a longitudinal exposure model integrated into all 4 years of medical school education. Midwestern University Arizona College of Osteopathic Medicine (MWU-AZCOM) adopted a 4-year longitudinal approach to include POCUS education in 2017.
View Article and Find Full Text PDFJ Med Econ
January 2025
UNESCO-TWAS, The World Academy of Sciences, Trieste, Italy.
Aim: Dynamic cancer control is a current health system priority, yet methods for achieving it are lacking. This study aims to review the application of system dynamics modeling (SDM) on cancer control and evaluate the research quality.
Methods: Articles were searched in PubMed, Web of Science, and Scopus from the inception of the study to November 15th, 2023.
Brief Bioinform
November 2024
Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.
Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre for Robotics and Automation, Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.
Liquid metals are highly conductive like metallic materials and have excellent deformability due to their liquid state, making them rather promising for flexible and stretchable wearable sensors. However, patterning liquid metals on soft substrates has been a challenge due to high surface tension. In this paper, a new method is proposed to overcome the difficulties in fabricating liquid-state strain sensors.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China.
Background: The function of some testis-specific genes (TSGs) in model insects have been studied, but their function in non-model insects remains largely unexplored. In the present study, we identified several TSGs in the fall armyworm (FAW), a significant agricultural pest, through comparative transcriptomic analysis. A testis-specific gene cluster (TSGC) comprising multiple functional genes and long non-coding RNAs was found.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!