Spinel oxides with the general formula ABO comprise a large family of compounds covering a very wide range of band-gap values (1 eV < < 8 eV) as a function of the nature of the metallic cations A and B. Owing to this, the physical properties of these materials have been largely exploited both from a fundamental point of view, for their variable electronic properties, and for their possible use in numerous engineering applications. Herein, the modeling of ZnAlO, ZnGaO, MgAlO, and MgGaO cubic spinel oxides has been carried out by using the semiempirical approach based on the difference of electronegativity between oxygen and the average electronegativity of cations present in the oxides. The results of recent theoretical extensions of our semiempirical approach to ternary and quaternary oxides have been tested for spinel oxides with metallic ions occupying both octahedrally and tetrahedrally coordinated sites in different ratios. A detailed analysis of the experimental band-gap values and comparison with the theoretically estimated values has been carried out for ternary ZnAlO, ZnGaO, MgAlO, and MgGaO spinels as well as for double spinels Mg(AlGa)O and Zn(AlGa)O, and quaternary mixed oxides (ZnMg)AlO and (ZnMg)GaO. The wide range of band-gap values reported in the literature for simple or double spinels has been related to the different preparation methods affecting the grain dimension of crystalline spinel samples as well as to the presence of crystallographic defects and/or impurities in the spinel matrix. The good agreement between experimental band-gap values and the theoretical ones strongly supports the use of our semiempirical approach in the area of band-gap engineering of new materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853993 | PMC |
http://dx.doi.org/10.1021/acsorginorgau.3c00030 | DOI Listing |
Nanoscale
January 2025
Department of Physics, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India.
In this study, we investigate a novel hybrid borocarbonitride (bpn-BCN) 2D material inspired by recent advances in carbon biphenylene synthesis, using first-principles calculations and semi-classical Boltzmann transport theory. Our analysis confirms the structural stability of bpn-BCN through formation energy, elastic coefficients, phonon dispersion, and molecular dynamics simulations at 300 K and 800 K. The material exhibits an indirect band gap of 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Semiconductor Engineering, Gyeongsang National University, Jinjudae-ro 501beon-gil, Jinju-si, Gyeongsangnam-do, Republic of Korea.
Organic photodetectors (OPDs) are cheaper and more flexible than conventional photodetectors based on inorganic precursors, but their wider commercial application is limited by their low electron extraction efficiency under reverse bias conditions (when operating under photoconductive mode). Zinc oxide (ZnO) has shown promise as an electron transport layer for OPDs owing to its wide band gap, but its electron extraction efficiency has been limited by issues such as photoinstability and the formation of surface detects. This study investigated the effects of doping ZnO nanoparticles with indium gallium (i.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia, Bangladesh.
Hematite (α-FeO) nanoparticles have been synthesized from waste source of iron which contains a prominent amount of iron (93.2 %) and investigated the effect of low temperature calcination. The two-step synthesis method involved preparing ferrous sulfate through acid leaching process followed by oxidation and calcination at temperatures ranging from 200 to 400 °C to produce the desired α-FeO in nano form.
View Article and Find Full Text PDFThe potential application of materials referred to as perovskite hydrides in hydrogen storage - a crucial element of renewable energy systems - has sparked a great deal of interest. We use density functional theory (DFT) to investigate the structural, formation energy, hydrogen storage, electronics, thermoelectric and elastic properties of NaXH (X = Be, Mg, Ca, and Sr) hydrides. The band gap is calculated using WC-GGA and WC-GGA+mBJ potentials.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China.
Indium (In) reduction is a hot topic in transparent conductive oxide (TCO) research. So far, most strategies have been focused on reducing the layer thickness of In-based TCO films and exploring TCOs. However, no promising industrial solution has been obtained yet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!