This work describes the synthesis of a novel material based on graphene oxide (GO) for the selective removal of boron in an aqueous medium. The material was obtained by functionalizing graphene oxide with -methyl-d-glucamine (NMDG). This material, named NMDG@GO, was successfully characterized using Fourier-transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, atomic force microscopy, and elemental analysis. The adsorption process was studied from a kinetic perspective using pseudo-first-order and pseudo-second-order models, with the pseudo-second-order model presenting a better fit. The adsorption process was studied using Langmuir and Freundlich isotherms, with the Freundlich model providing a better fit and an value of 0.9368. This result indicates that the adsorption process occurred in multilayers, considering a heterogeneous distribution of adsorption sites. The levels of the factor's adsorbent mass, pH, and time were optimized using a central composite design, with the optimal values achieved at 120 mg of material, pH = 2.0, and an agitation time of 40 min. Under these optimized conditions, it was possible to remove 22 to 35% of the boron present in saline waters from oil production (production and formation waters) using the developed adsorbent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10855022 | PMC |
http://dx.doi.org/10.1039/d4ra00037d | DOI Listing |
ACS Sens
January 2025
Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MDMaastricht, The Netherlands.
Malaria is a major public healthcare concern worldwide, representing a leading cause of death in specific regions. The gold standard for diagnosis is microscopic analysis, but this requires a laboratory setting, trained staff, and infrastructure and is therefore typically slow and dependent on the experience of the technician. This study introduces, for the first time, a biomimetic sensing platform for the direct detection of the disease.
View Article and Find Full Text PDFSmall
January 2025
School of Materials and Physics & Center of Mineral Resource Waste Recycling, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.
Designing spent graphite anodes from lithium-ion batteries (LIBs) for applications beyond regenerated batteries offers significant potential for promoting the recycling of spent LIBs. The battery-grade graphite, characterized by a highly graphitized structure, demonstrates excellent conductive loss capabilities, making it suitable for microwave absorption. During the Li-ion intercalation and deintercalation processes in battery operation, the surface layer of spent graphite (SG) becomes activated, forming oxygen-rich functional groups that enhance the polarization loss mechanism.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
The majority of industries throughout the world rely largely on fossil fuels as their primary energy source. However, these resources are finite and become scarcer by the day. Therefore, exploring alternative fuels and additives for diesel fuel is imperative to mitigate fuel consumption.
View Article and Find Full Text PDFSci Rep
January 2025
Renewable Energy Research Group, Isfahan, Iran.
The performance of nanofluids is largely determined by their thermophysical properties. Optimizing these properties can significantly enhance nanofluid performance. This study introduces a hybrid strategy based on computational intelligence to determine the optimal conditions for ternary hybrid nanofluids.
View Article and Find Full Text PDFJ Oral Sci
January 2025
Department of Conservative Dentistry, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University.
Purpose: This study investigated the synergistic effects of reduced graphene oxide (RGO) on the antibacterial activity of three calcium hydroxide-based intracanal medicaments with different vehicles.
Methods: Multispecies biofilms were cultured in a bovine root canal model. Intracanal medicaments containing nonaqueous vehicles, including N-methyl-2-pyrrolidone (NMP; CleaniCal), propylene glycol (PG; UltraCal XS), and polyethylene glycol (PEG; Calcipex II), were placed in the model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!