A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Study of Soybean Oil-Based Non-Isocyanate Polyurethane Films via a Solvent and Catalyst-Free Approach. | LitMetric

Synthesizing polymeric materials that are both sustainable and practical has become a priority. Polyurethanes (PUs) are becoming more popular because of their countless applications and exclusive properties in many sectors. While considering the current issue of environmental problems and the excessive use of petroleum products, nonisocyanate PU (NIPU) are favored due to their sustainability and low toxicity compared to conventional PU. In this work, flexible NIPU films were made using a green and facile method. For that, soybean oil (SBO) was used as the starting material and converted into epoxide SBO, followed by its chemical conversion into carbonated SBO (CSBO) using carbon dioxide gas. Following that, the CSBO reacted with three different aliphatic amines, namely, 1,2-ethylenediamine, 1,4-butylenediamine, and 1,6-hexamethylenediamine, in a solventless and catalyst-free system. The films were cast and cured at 85 °C for different curing times. The effects of the aliphatic diamines and curing times on the NIPU films were evaluated. The individual materials were confirmed with Fourier transform infrared, H nuclear magnetic resonance, and gel permeation chromatography. To analyze the thermal and mechanical properties, thermogravimetric analysis, dynamic mechanical analysis, and differential scanning calorimetry were performed. Furthermore, mechanical tests such as hardness and tensile strength were also performed along with the degree of swelling, gel content, and contact angle by using several solvents. This study elucidated the structure-property relationship based on the effect of curing time and aliphatic chain size of diamines in the properties of a NIPU film. The satisfactory thermal and mechanical properties, accompanied by a green and facile approach, displayed the potential scalability of the NIPU films.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851237PMC
http://dx.doi.org/10.1021/acsomega.3c09185DOI Listing

Publication Analysis

Top Keywords

nipu films
12
green facile
8
curing times
8
thermal mechanical
8
mechanical properties
8
films
5
nipu
5
study soybean
4
soybean oil-based
4
oil-based non-isocyanate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!