Recent studies have demonstrated that speech can be decoded from brain activity and used for brain-computer interface (BCI)-based communication. It is however also known that the area often used as a signal source for speech decoding BCIs, the sensorimotor cortex (SMC), is also engaged when people perceive speech, thus making speech perception a potential source of false positive activation of the BCI. The current study investigated if and how speech perception may interfere with reliable speech BCI control. We recorded high-density electrocorticography (HD-ECoG) data from five subjects while they performed a speech perception and speech production task and trained a support-vector machine (SVM) on the produced speech data. Our results show that decoders that are highly reliable at detecting self-produced speech from brain signals also generate false positives during the perception of speech. We conclude that speech perception interferes with reliable BCI control, and that efforts to limit the occurrence of false positives during daily-life BCI use should be implemented in BCI design to increase the likelihood of successful adaptation by end users.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854295 | PMC |
http://dx.doi.org/10.1101/2024.01.21.23300437 | DOI Listing |
JASA Express Lett
January 2025
Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington 98103, USA.
Pitch perception affects children's ability to perceive speech, appreciate music, and learn in noisy environments, such as their classrooms. Here, we investigated pitch perception for pure tones as well as resolved and unresolved complex tones with a fundamental frequency of 400 Hz in 8- to 11-year-old children and adults. Pitch perception in children was better for resolved relative to unresolved complex tones, consistent with adults.
View Article and Find Full Text PDFSci Rep
January 2025
RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, Oslo, 0373, Norway.
Periodic sensory inputs entrain oscillatory brain activity, reflecting a neural mechanism that might be fundamental to temporal prediction and perception. Most environmental rhythms and patterns in human behavior, such as walking, dancing, and speech do not, however, display strict isochrony but are instead quasi-periodic. Research has shown that neural tracking of speech is driven by modulations of the amplitude envelope, especially via sharp acoustic edges, which serve as prominent temporal landmarks.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, USA.
Auditory perception requires categorizing sound sequences, such as speech or music, into classes, such as syllables or notes. Auditory categorization depends not only on the acoustic waveform, but also on variability and uncertainty in how the listener perceives the sound - including sensory and stimulus uncertainty, the listener's estimated relevance of the particular sound to the task, and their ability to learn the past statistics of the acoustic environment. Whereas these factors have been studied in isolation, whether and how these factors interact to shape categorization remains unknown.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
Background: Cochlear implants (CI) with off-the-ear (OTE) and behind-the-ear (BTE) speech processors differ in user experience and audiological performance, impacting speech perception, comfort, and satisfaction.
Objectives: This systematic review explores audiological outcomes (speech perception in quiet and noise) and non-audiological factors (device handling, comfort, cosmetics, overall satisfaction) of OTE and BTE speech processors in CI recipients.
Methods: We conducted a systematic review following PRISMA-S guidelines, examining Medline, Embase, Cochrane Library, Scopus, and ProQuest Dissertations and Theses.
Int J Audiol
January 2025
Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA.
Objectives: An improvement in speech perception is a major well-documented benefit of cochlear implantation (CI), which is commonly discussed with CI candidates to set expectations. However, a large variability exists in speech perception outcomes. We evaluated the accuracy of clinical predictions of post-CI speech perception scores.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!