Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Conservation translocations often inherently involve a risk of genetic diversity loss, and thus loss of adaptive potential, but this risk is rarely quantified or monitored through time. The reintroduction of beavers to Scotland, via the Scottish Beaver Trial in Knapdale, is an example of a translocation that took place in the absence of genetic data for the founder individuals and resulted in a small and suspected to be genetically depauperate population. In this study we use a high-density SNP panel to assess the genetic impact of that initial translocation and the effect of subsequent reinforcement translocations using animals from a different genetic source to the original founders. We demonstrate that the initial translocation did, indeed, lead to low genetic diversity ( = 0.052) and high mean kinship (KING-robust = 0.159) in the Knapdale population compared to other beaver populations. We also show that the reinforcement translocations have succeeded in increasing genetic diversity ( = 0.196) and reducing kinship (KING robust = 0.028) in Knapdale. As yet, there is no evidence of admixture between the two genetic lineages that are now present in Knapdale and such admixture is necessary to realise the full genetic benefits of the reinforcement and for genetic reinforcement and then rescue to occur; future genetic monitoring will be required to assess whether this has happened. We note that, should admixture occur, the Knapdale population will harbour combinations of genetic diversity not currently seen elsewhere in Eurasian beavers, posing important considerations for the future management of this population. We consider our results in the wider context of beaver conservation throughout Scotland and the rest of Britain, and advocate for more proactive genetic sampling of all founders to allow the full integration of genetic data into translocation planning in general.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853653 | PMC |
http://dx.doi.org/10.1111/eva.13629 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!