The use of plants for nanoparticle (NP) synthesis, grounded in green chemistry principles, is an environmentally friendly and economically viable approach. In the present study, the leaf extract of was used as a biosynthetic agent to generate bimetallic zinc oxide NPs. The present study investigated the effect of ZnO NPs on anti-angiogenesis and cell migration. Various bimetallic NPs, including zinc-iron oxide and nickel-zinc oxide, underwent characterization through Fourier-transform infrared spectroscopy and X-ray Diffraction within the 25-65˚ range. Confirmation of NP formation was determined by identifying the surface plasmon resonance peak. MTT assay was used to determine the cytotoxic properties of extracts, ZnO NPs and associated metals in MCF-7 breast cancer cells. The plant extract demonstrated antiproliferative effects at 200 µg/ml, whereas -FeZnO NPs showed varying cytotoxic effects based on concentration. The rat aortic ring and cell migration assays illuminated anti-angiogenic attributes, with the FeZnO NPs blocking blood vessel development entirely at 100 µg/ml, implying profound anti-angiogenic efficacy. Therefore, FeZnO NPs may serve a role in antiangiogenic therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853757PMC
http://dx.doi.org/10.3892/br.2024.1724DOI Listing

Publication Analysis

Top Keywords

zno nps
8
cell migration
8
fezno nps
8
nps
7
anti‑angiogenic cytotoxic
4
cytotoxic evaluation
4
evaluation green‑synthesized
4
green‑synthesized fezno
4
fezno nanoparticles
4
nanoparticles mcf‑7
4

Similar Publications

The aim of the present work is to investigate the photocatalytic degradation of propyl paraben (propyl para-hydroxybenzoate, PrP) using CuO-ZnO-NPs photocatalyst followed by the identification of the oxidation by-products. The CuO-ZnO-NPs material, synthesized using a green chemistry approach, was used as a photocatalyst for the removal of PrP. The nanoparticles were characterized by XRD, XRF, diffuse reflectance spectroscopy, ATG/DTG, FTIR, SEM-EDX, BET and FRX techniques.

View Article and Find Full Text PDF

Decoding Plant-Based Green Synthesis of Zinc Oxide Nanoparticles.

Chem Biodivers

January 2025

Physics Department, Centre National de la Recherche Scientifique (Unité Mixte de Recherche 6283), Institut des Molécules et Matériaux du Mans, Le Mans Université, Le Mans, France.

Article Synopsis
  • This study compares the behavior of two plant species and their extracts in synthesizing zinc oxide nanoparticles from zinc nitrate hexahydrate.
  • Sugars, particularly glucose and sucrose, play a crucial role in this synthesis, comprising over 70% of the dried extract.
  • The process can successfully occur at low temperatures (120°C) but requires a specific ratio of reactants to ensure the production of "clean" ZnO nanoparticles.
View Article and Find Full Text PDF

Extracts of medicinal seeds can be used to synthesize nanoparticles (NPs) in more environmentally friendly ways than physical or chemical ways. For the first time, aqueous extract from unexploited grape seeds was used in this study to create Se/ZnO NPS utilizing a green technique, and their antimicrobial activity, cytotoxicity, antioxidant activities, and plant bio stimulant properties of the economic Vicia faba L. plant were evaluated.

View Article and Find Full Text PDF
Article Synopsis
  • Chickpeas and apricots are economically significant crops that suffer from severe fungal infections, traditionally managed with chemical fungicides that pose health and environmental risks.
  • Myco-synthesized (from fungi) and bacteria-synthesized zinc oxide (ZnO) nanoparticles were compared for their antifungal effectiveness against specific pathogens affecting these crops.
  • Results showed that myco-synthesized ZnO nanoparticles exhibited better antifungal properties at lower concentrations, highlighting the need for further research to enhance their application in agriculture as sustainable alternatives to chemical fungicides.
View Article and Find Full Text PDF

Solution combustion synthesis of ZnO doped CuO nanocomposite for photocatalytic and sensor applications.

Sci Rep

January 2025

Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

ZnO-doped CuO nanocomposites (CuO-ZnO NPs) of 1, 3, and 5 mol% were prepared by the solution combustion method using ODH as a fuel (Oxlyl-hydrazide) at 500 °C and calcining at 1000 °C for two hours and the Structural, photocatalytic, and electrochemical properties were investigated by experimental and theoretical methods. X-ray diffraction (XRD) patterns revealed a crystallite size (D) range of 25 to 31 nm for pure CuO and 1, 3, and 5 mol% CuO-ZnO NPs. According to calculations, the optical energy band gap (Eg) of the NPs is between 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!