Integrating high-volume molecular and morphological data into the evolutionary studies of .

Plant Divers

Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.

Published: January 2024

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851282PMC
http://dx.doi.org/10.1016/j.pld.2023.12.002DOI Listing

Publication Analysis

Top Keywords

integrating high-volume
4
high-volume molecular
4
molecular morphological
4
morphological data
4
data evolutionary
4
evolutionary studies
4
integrating
1
molecular
1
morphological
1
data
1

Similar Publications

Development of high-throughput electrospun chitosan/PEO-CNC composite membranes with enhanced antibacterial and oil-water separation properties.

Int J Biol Macromol

January 2025

Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China.

Untreated waste liquid mixtures often support large bacterial populations, posing challenges to effective purification due to high volume and limited filtration efficiency. This study aims to develop a multifunctional filtration membrane that combines both filtration and sterilization, enhancing overall purification efficiency. Using electrospinning technology, we fabricated a superhydrophilic, oil-repellent membrane by integrating the hydrophilic properties of chitosan, antibacterial N-halamine groups, and the mechanical strength of cellulose nanocrystals (CNC).

View Article and Find Full Text PDF

Magnetic Bistable Dome Actuators for Soft Robotics with High Volume Capacity and Motion Stability.

ACS Appl Mater Interfaces

January 2025

Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, P.R. China.

Magneto-responsive soft actuators hold significant promise in soft robotics due to their rapid responsiveness and untethered operation. However, controlling their deformations presents challenges because of their inherent flexibility and high degrees of freedom. Here, we present a magnetically driven bistable dome-shaped soft actuator that simplifies deformation by limiting it to two distinct states.

View Article and Find Full Text PDF

Purpose: This study aimed to investigate the impact of a 6-week upper-body plyometric-training (PT) program with varying volumes on the immunoendocrine, physiological parameters, and physical performance adaptations in male volleyball players.

Methods: Twenty-four trained college players were randomly allocated into 3 groups with 8 participants. Each group performed 5 exercises at maximal effort with differences in volume: low (3 sets of 7 repetitions), moderate (3 sets of 10 repetitions), and high (3 sets of 13 repetitions).

View Article and Find Full Text PDF

: High-volume online hemodiafiltration (OL-HDF) has proven to be the most efficient dialysis modality and to offer better clinical outcomes in patients on hemodialysis. Longer and more frequent dialysis sessions have demonstrated clinical and survival benefits. : A single-center observational study of the first one hundred patients on nocturnal every-other-day OL-HDF was conducted with the aim of reporting the experience with this treatment schedule and evaluating analytical and clinical outcomes as well as the patient and technique survival.

View Article and Find Full Text PDF

The integration of flexible electronics and photonics has the potential to create revolutionary technologies, yet it has been challenging to marry electronic and photonic components on a single polymer device, especially through high-volume manufacturing. Here, we present a robust, chiplet-level heterogeneous integration of polymer-based circuits (CHIP), where several post-fabricated, ultrathin, polymer electronic, and optoelectronic chiplets are vertically bonded into one single chip at room temperature and then shaped into application-specific form factors with monolithic Input/Output (I/O). As a demonstration, we applied this process and developed a flexible 3D-integrated optrode with high-density arrays of microelectrodes for electrical recording and micro light-emitting diodes (μLEDs) for optogenetic stimulation while with unprecedented integration of additional temperature sensors for bio-safe operations and shielding designs for optoelectronic artifact prevention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!