Climate change poses a serious long-term threat to biodiversity. To effectively reduce biodiversity loss, conservationists need to have a thorough understanding of the preferred habitats of species and the variables that affect their distribution. Therefore, predicting the impact of climate change on species-appropriate habitats may help mitigate the potential threats to biodiversity distribution. , a monocotyledonous genus of the family Velloziaceae is native to mainland Africa, Madagascar, and the Arabian Peninsula. The key drivers of habitat distribution and preference are unknown. Using 308 species occurrence data and eight environmental variables, the MaxEnt model was used to determine the potential distribution of six species in Africa under past, current and future climate change scenarios. The results showed that the models had a good predictive ability (Area Under the Curve and True Skill Statistics values for all SDMs were more than 0.902), indicating high accuracy in forecasting the potential geographic distribution of species. The main bioclimatic variables that impacted potential distributions of most species were mean temperature of the driest quarter (Bio9) and precipitation of the warmest quarter (Bio18). According to our models, tropical Africa has zones of moderate and high suitability for taxa, which is consistent with the majority of documented species localities. The habitat suitability of the existing range of the species varied based on the climate scenario, with most species experiencing a range loss greater than the range gain regardless of the climate scenario. The projected spatiotemporal patterns of species help guide recommendations for conservation efforts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851299 | PMC |
http://dx.doi.org/10.1016/j.pld.2023.05.001 | DOI Listing |
Integr Environ Assess Manag
January 2025
Department of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California, San Francisco; San Francisco, California, 94158United States.
Water scarcity is projected to affect half of the world's population, gradually exacerbated by climate change. This article elaborates from a panel discussion at the 2023 United Nations Water Conference on Addressing Water Scarcity to Achieve Climate Resilience and Human Health. Understanding and addressing water scarcity goes beyond hydrological water balances to also include societal and economic measures.
View Article and Find Full Text PDFAmbio
January 2025
Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA.
Curr Microbiol
January 2025
Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
Abies pindrow, a vital conifer in the Kashmir Himalayan forests, faces threats from low regeneration rates, deforestation, grazing, and climate change, highlighting the urgency for restoration efforts. In this context, we investigated the diversity of potential culturable seed endophytes in A. pindrow, assessed their plant growth-promoting (PGP) activities, and their impact on seed germination and seedling growth.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Air Quality, Climate Change and Health (ACH) Lab, Department of Public Health and Informatics, Jahangirnagar University, 1342, Savar, Dhaka, Bangladesh.
The growing global attention on urban air quality underscores the need to understand the spatiotemporal dynamics of nitrogen dioxide (NO) and its environmental and anthropogenic factors, particularly in cities like Dhaka (Gazipur), Bangladesh, which suffers from some of the world's worst air quality. This study analysed NO concentrations in Gazipur from 2019 to 2022 using Sentinel-5P TROPOMI data on the Google Earth Engine (GEE) platform. Correlations and regression analysis were done between NO levels and various environmental factors, including land surface temperature (LST), normalized difference vegetation index (NDVI), land use and land cover (LULC), population density, road density, settlement density, and industry density.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Institute of Biochemical Engineering/Institut für Bioverfahrenstechnik, University of Stuttgart, Stuttgart, Germany.
While rising greenhouse gases cause climate change, global economies ask for resilient solutions for the business of the future. Biomanufacturing may well serve as a pillar of a circular economy with minimised environmental impact. Therefore, innovations of the lab need to successfully bridge the imminent 'death-valley of innovation' for making commercial production happen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!