Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857472 | PMC |
http://dx.doi.org/10.1080/08998280.2024.2306784 | DOI Listing |
J Imaging Inform Med
January 2025
Department of Anesthesiology, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan.
Parkinson's disease (PD), a degenerative disorder of the central nervous system, is commonly diagnosed using functional medical imaging techniques such as single-photon emission computed tomography (SPECT). In this study, we utilized two SPECT data sets (n = 634 and n = 202) from different hospitals to develop a model capable of accurately predicting PD stages, a multiclass classification task. We used the entire three-dimensional (3D) brain images as input and experimented with various model architectures.
View Article and Find Full Text PDFGene
January 2025
Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150081, PR China. Electronic address:
Currently, the pathogenesis of epilepsy remains poorly understood. Although there is evidence indicating that iron death might play a significant role, its molecular immunological mechanisms are largely unknown. This study was designed to analyze and explore the molecular mechanisms and immunological characteristics of iron death-related genes in epilepsy.
View Article and Find Full Text PDFShock
January 2025
Department of Industrial and Systems Engineering, University of Florida, P.O. Box 116595, Gainesville, FL, 32611, USA.
Understanding clinical trajectories of sepsis patients is crucial for prognostication, resource planning, and to inform digital twin models of critical illness. This study aims to identify common clinical trajectories based on dynamic assessment of cardiorespiratory support using a validated electronic health record data that covers retrospective cohort of 19,177 patients with sepsis admitted to ICUs of Mayo Clinic Hospitals over eight-year period. Patient trajectories were modeled from ICU admission up to 14 days using an unsupervised machine learning two-stage clustering method based on cardiorespiratory support in ICU and hospital discharge status.
View Article and Find Full Text PDFCurr Pain Headache Rep
January 2025
Division of Perioperative Informatics, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA.
Purpose Of Review: Artificial intelligence (AI) offers a new frontier for aiding in the management of both acute and chronic pain, which may potentially transform opioid prescribing practices and addiction prevention strategies. In this review paper, not only do we discuss some of the current literature around predicting various opioid-related outcomes, but we also briefly point out the next steps to improve trustworthiness of these AI models prior to real-time use in clinical workflow.
Recent Findings: Machine learning-based predictive models for identifying risk for persistent postoperative opioid use have been reported for spine surgery, knee arthroplasty, hip arthroplasty, arthroscopic joint surgery, outpatient surgery, and mixed surgical populations.
IET Syst Biol
January 2025
School of Computer, University of South China, Hengyang, Hunan, China.
Spatially resolved transcriptomics technologies potentially provide the extra spatial position information and tissue image to better infer spatial cell-cell interactions (CCIs) in processes such as tissue homeostasis, development, and disease progression. However, methods for effectively integrating spatial multimodal data to infer CCIs are still lacking. Here, the authors propose a deep learning method for integrating features through co-convolution, called SpaGraphCCI, to effectively integrate data from different modalities of SRT by projecting gene expression and image feature into a low-dimensional space.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!