Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Central Serous Chorioretinopathy (CSC) is a retinal disorder caused by the accumulation of fluid, resulting in vision distortion. The diagnosis of this disease is typically performed through Optical Coherence Tomography (OCT) imaging, which displays any fluid buildup between the retinal layers. Currently, these fluid regions are manually detected by visual inspection a time-consuming and subjective process that can be prone to errors. A series of six deep learning-based automatic segmentation architectural configurations of different levels of complexity were trained and compared in order to determine the best model intended for the automatic segmentation of CSC-related lesions in OCT images. The best performing models were then evaluated in an external validation study. Furthermore, an intra- and inter-expert analysis was conducted in order to compare the manual segmentation performed by expert ophthalmologists with the automatic segmentation provided by the models. Test results of the best performing configuration achieved a mean Dice of in the internal dataset. In the external validation set, these models achieved a level of agreement with human experts of up to 0.960 in terms of Kappa coefficient, contrasting with a value of 0.951 for agreement between human experts. Overall, the models reached a better agreement with either of the human experts than these experts with each other, suggesting that automatic segmentation models for the detection of CSC-related lesions in OCT imaging can be useful tools for assessing this disease, reducing the workload of manual inspection and leading to a more robust and objective diagnosis method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976924 | PMC |
http://dx.doi.org/10.1007/s10278-023-00926-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!