Pretreatment patient-specific quality assurance (prePSQA) is conducted to confirm the accuracy of the radiotherapy dose delivered. However, the process of prePSQA measurement is time consuming and exacerbates the workload for medical physicists. The purpose of this work is to propose a novel deep learning (DL) network to improve the accuracy and efficiency of prePSQA. A modified invertible and variable augmented network was developed to predict the three-dimensional (3D) measurement-guided dose (MDose) distribution of 300 cancer patients who underwent volumetric modulated arc therapy (VMAT) between 2018 and 2021, in which 240 cases were randomly selected for training, and 60 for testing. For simplicity, the present approach was termed as "IVPSQA." The input data include CT images, radiotherapy dose exported from the treatment planning system, and MDose distribution extracted from the verification system. Adam algorithm was used for first-order gradient-based optimization of stochastic objective functions. The IVPSQA model obtained high-quality 3D prePSQA dose distribution maps in head and neck, chest, and abdomen cases, and outperformed the existing U-Net-based prediction approaches in terms of dose difference maps and horizontal profiles comparison. Moreover, quantitative evaluation metrics including SSIM, MSE, and MAE demonstrated that the proposed approach achieved a good agreement with ground truth and yield promising gains over other advanced methods. This study presented the first work on predicting 3D prePSQA dose distribution by using the IVPSQA model. The proposed method could be taken as a clinical guidance tool and help medical physicists to reduce the measurement work of prePSQA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976903 | PMC |
http://dx.doi.org/10.1007/s10278-023-00930-w | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130.
Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-systems models involving hundreds of interacting neural populations, from single-subject M/EEG time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics ("precision brain models") and making quantitative predictions.
View Article and Find Full Text PDFPractical identifiability is a critical concern in data-driven modeling of mathematical systems. In this paper, we propose a novel framework for practical identifiability analysis to evaluate parameter identifiability in mathematical models of biological systems. Starting with a rigorous mathematical definition of practical identifiability, we demonstrate its equivalence to the invertibility of the Fisher Information Matrix.
View Article and Find Full Text PDFForensic Sci Int
November 2024
Department of Sociology, Anthropology and Criminal Justice, Clemson University, Clemson, SC 29634, USA.
Genetica
December 2024
School of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China.
J Neural Eng
December 2024
CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
Neuronal oscillatory patterns are believed to underpin multiple cognitive mechanisms. Accordingly, compromised oscillatory dynamics were shown to be associated with neuropsychiatric conditions. Therefore, the possibility of modulating, or controlling, oscillatory components of brain activity as a therapeutic approach has emerged.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!