Pesticide residues in drinking water treatment plants and human health risk assessment: a case study from Northern Iran.

Environ Geochem Health

Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.

Published: February 2024

These days, the presence of pesticide residues in drinking water sources is a serious concern. In drinking water treatment plants (DWTPs), various methods have been proposed to remove pesticide residues. This study was designed with the objectives of monitoring the occurrence and seasonal variations of pesticides in the output of drinking water treatment plants in two Northern provinces of Iran, Gilan and Golestan, and identifying their human health risks. Seventeen pesticide residues from different chemical structures were determined by using a gas chromatograph-mass spectrometer (GC-MS). The results showed that only Alachlor, Diazinon, Fenitrothion, Malathion, and Chlorpyrifos were detected. The pesticide concentrations ranged from ND to 405.3 ng/L and were higher in the first half-year period. The total non-carcinogenic human health risks was in safe range for infants, children, and adults (HI < 1). The carcinogenic human health risks of Alachlor for infants, children, and adults were in the range of 4.3 × 10 to 1.3 × 10, 2.0 × 10 to 9.6 × 10, and 1.1 × 10 to 5.5 × 10, respectively. These values do not pose health risks for adults and children, but may present a possible cancer risk for infants in two DWTPs of Golestan. In conclusion, considering the possibility of exposure to these pesticides through other routes, simultaneously, it is suggested to carry out a study that examines the level of risk by considering all exposure routes. We also propose stricter regulations for the sale and use of pesticides in Iran.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-024-01878-8DOI Listing

Publication Analysis

Top Keywords

pesticide residues
16
drinking water
16
water treatment
12
treatment plants
12
human health
12
residues drinking
8
health risks
8
pesticide
5
drinking
4
water
4

Similar Publications

Discovery of New Benzohydrazide Derivatives Containing 4-Aminoquinazoline as Effective Agricultural Fungicides, the Related Mechanistic Study, and Safety Assessment.

J Agric Food Chem

January 2025

State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.

A total of 38 new benzohydrazide derivatives bearing the 4-aminoquinazoline moiety were designed and synthesized based on the active subunit combination approach and tested in detail for their inhibition activities against eight agricultural phytopathogenic fungi. The bioassay results indicated that many of the synthesized compounds exhibited extraordinary fungicidal activities in vitro against the tested fungi. For example, compounds , , , and had EC (half-maximal effective concentration) values of 0.

View Article and Find Full Text PDF

Pathway Elucidation and Key Enzymatic Processes in the Biodegradation of Difenoconazole by A-3.

J Agric Food Chem

January 2025

Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.

The extensive agricultural use of the fungicide difenoconazole (DIF) and its associated toxicity increasingly damage ecosystems and human health. Thus, an urgent need is to develop environmentally friendly technological approaches capable of effectively removing DIF residues. In this study, strain A-3 was isolated for the first time which can degrade DIF efficiently.

View Article and Find Full Text PDF

Pesticide dislodgeable foliar residues (DFR) and their dissipation half-time (DT) after application are important parameters for exposure and risk assessment from intended reentry activities or unintended dermal contact with treated crops. To understand the impact of agronomic factors on residue level a statistical based evaluation was conducted using ten DFR studies, with pyrimethanil applied in Scala to strawberries, raspberries, peppers, apples, and grapes, 30 trials in total. Influences on initial DFR (DFR0) and DT were investigated by multivariate linear regression analysis.

View Article and Find Full Text PDF

In accordance with Article 6 of Regulation (EC) No 396/2005, the applicant Agro-Kanesho Kabushiki Kaisha submitted a request to the competent national authority in Greece to modify the existing maximum residue level (MRL) for the active substance acequinocyl in strawberries. The data submitted in support of the request were found to be sufficient to derive an MRL proposal for strawberries based on the indoor GAP. Adequate analytical methods for enforcement are available to control the residues of acequinocyl in strawberries at the validated LOQ of 0.

View Article and Find Full Text PDF

The continuous development and application of pesticides in agriculture require robust multiresidue detection methods to guarantee food safety. This study introduces a novel method for multiresidue determination of pesticides in eggplants using the QuEChERS procedure, incorporating a clean-up step using carbon nanotubes stabilized in chitosan sponge (CNT-CS) and ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) for analysis. Upon identifying the optimal extraction conditions, various sorbents were assessed for their efficacy in the dispersive solid-phase extraction (d-SPE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!