Acoustic noise generated by TMS in typical environment and inside an MRI scanner.

Brain Stimul

Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; Department of Medical Biophysics, University of Toronto, Toronto, Canada.

Published: April 2024

Background: The operation of a transcranial magnetic stimulation (TMS) coil produces high-intensity impulse sounds. In TMS, a magnetic field is generated by a short-duration pulse in the range of thousands of amperes in the TMS coil. When placed in a strong magnetic field, such as inside a magnetic resonance imaging (MRI) bore, the interaction of the magnetic field and the current in the TMS coil can cause strong forces on the coil casing. The strengths of these forces depend on the coil orientation in the main magnetic field (B). Part of the energy in this process is dissipated in the form of acoustic noise.

Objective: Our objective was to measure the sound pressure levels (SPL) of TMS "click" sounds created by commercial TMS stimulators and coils in a typical environment and inside a 3-T MRI scanner and advance the knowledge of the acoustic behaviour of TMS to safely conduct TMS alone as well as concurrently with functional MRI (fMRI).

Methods: We report SPL measurements of two commercial MRI-compatible TMS systems in the 3-T B field of an MRI scanner and in the earth's magnetic field. Also, we present the acoustic noise measurements of four commercial TMS stimulators and three different TMS coils in a typical operational environment without the B field.

Results: The maximum peak SPL measured was 158 dB(C) inside the 3-T MRI scanner. Outside the scanner, the maximum peak SPL was 117 dB(C). Inside the scanner, the peak SPL increased by 21-45 dB(C) depending on the stimulator and the orientation of the electric field relative to the B field.

Conclusions: Hearing protection is obligatory during concurrent TMS-fMRI experiments and highly recommended during any TMS experiment. The manufacturing of quieter TMS systems is encouraged to reduce the risk of hearing damage and other unwanted effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brs.2024.02.006DOI Listing

Publication Analysis

Top Keywords

magnetic field
20
mri scanner
16
tms
14
tms coil
12
peak spl
12
acoustic noise
8
typical environment
8
environment inside
8
coil strong
8
commercial tms
8

Similar Publications

Stabilizing large easy-axis type magnetic anisotropy in molecular complexes is a challenging task, yet it is crucial for the development of information storage devices and applications in molecular spintronics. Achieving this requires a deep understanding of electronic structure and the relationships between structure and properties to develop magneto-structural correlations that are currently unexplored in the literature. Herein, a series of five-coordinate distorted square pyramidal Co complexes [Co(L)(X)].

View Article and Find Full Text PDF

AlgaeSperm: Microalgae-Based Soft Magnetic Microrobots for Targeted Tumor Treatment.

Small

January 2025

School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China.

Magnetic microrobots are significant platforms for targeted drug delivery, among which sperm-inspired types have attracted much attention due to their flexible undulation. However, mass production of sperm-like soft magnetic microrobots with high-speed propulsion is still challenging due to the need of more reasonable structure design and facile fabrication. Herein, a novel strategy is proposed for large-scale preparation of microalgae-based soft microrobots with a fully magnetic head-to-tail structure, called AlgaeSperm with robust propulsion and chemo-photothermal performance.

View Article and Find Full Text PDF

A Schiff base-functionalized chitosan magnetic bio-nanocomposite for efficient removal of Pb (II) and Cd (II) ions from aqueous solutions.

Int J Biol Macromol

January 2025

Department of Chemistry, Faculty of Science, Arak University, Arak 38481-77584, Iran; Institute of Nanosciences &Nanotechnology, Arak University, Arak, Iran. Electronic address:

The rapid industrialization and human activities in catchments have posed notable global challenges in removing of heavy metal contaminants from wastewater. Here, Schiff-bases (SB) of cyanoguanidine (CG) and salicylaldehyde (SA) were covalently grafted on a magnetic nanocomposite of chitosan to form a hybrid magnetic nanostructure (FeO@CS-CGSB). The synthesized structure was characterized using various techniques such as Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), zeta potential, and Brunauer-Emmett-Teller surface area analysis (BET).

View Article and Find Full Text PDF

Among the numerous measurements carried out during a well-logging procedure, the Nuclear Magnetic Resonance (NMR) assessment is one of the fundamental analyses in determining the economic viability of a well for the oil industry. Nowadays, two reliable approaches, Wireline Logging (WL) and Logging While Drilling (LWD), stand out. WL comprises the acquisition of NMR data under static conditions.

View Article and Find Full Text PDF

Theory and simulations are used to demonstrate implementation of a variational Bayes algorithm called "active inference" in interacting arrays of nanomagnetic elements. The algorithm requires stochastic elements, and a simplified model based on a magnetic artificial spin ice geometry is used to illustrate how nanomagnets can generate the required random dynamics. Examples of tracking and PID control are demonstrated and shown to be consistent with the original stochastic differential equation formulation of active inference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!