Cassava (Manihot esculenta Crantz) leaves, the primary by-product of cassava processing, constitute a significant protein source, accounting for 18 to 38 percent on a dry weight basis. Despite their nutritional value, a substantial portion of these leaves is often discarded post-harvest, resulting in notable resource waste. This study employs metagenomic technology to investigate the protein degradation mechanism in cassava leaves, aiming to provide a technical reference for value-added of this by-product. Following a 36-hour period of natural fermentation, the protein degradation rate reached 58%, a phenomenon intricately linked to both the microbial community structure and its functional properties. Notably, Lactococcus and Enterobacter, recognized for their abundant protease activity, were predominant. Metagenomically assembled genomes further revealed Lactococcus's substantial role in producing flavors and active compounds, including amino acids and peptides. This study offers novel perspectives to the foodization and high-value utilization of cassava by-products, emphasizing the sustainable exploitation of biomass resources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.130433 | DOI Listing |
RSC Med Chem
January 2025
Department of Pharmaceutical Sciences, University of California Irvine California 92617 USA
Degrons are short amino acid sequences that can facilitate the degradation of protein substrates. They can be classified as either ubiquitin-dependent or -independent based on their interactions with the ubiquitin proteasome system (UPS). These amino acid sequences are often found in exposed regions of proteins serving as either a tethering point for an interaction with an E3 ligase or initiating signaling for the direct degradation of the protein.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Pharmaceutical Development Biologicals, TIP, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany.
Polysorbates, in particular polysorbate (PS) 20 and 80, are the most commonly used surfactants for stabilising biotherapeutics produced by biotechnological processes. PSs are derived from ethoxylated sorbitan (a derivative of sorbitol) esterified with fatty acids of varying chain length and degree of saturation. In the past, these surfactants have been reported to have specific liabilities.
View Article and Find Full Text PDFMultiple myeloma is characterized by malignant cells which produce high amounts of monoclonal immunoglobulin. Myeloma cells are, therefore, dependent on effective protein degradation. Proteasomal protein degradation is targeted by proteasome inhibitors in routine care.
View Article and Find Full Text PDFWorld J Stem Cells
January 2025
Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul 06974, South Korea.
Background: Human mesenchymal stromal cells (MSCs) possess regenerative potential due to pluripotency and paracrine functions. However, their stemness and immunomodulatory capabilities are sub-optimal in conventional two-dimensional (2D) culture.
Aim: To enhance the efficiency and therapeutic efficacy of MSCs, an -like 3D culture condition was applied.
Reprod Med Biol
January 2025
Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of Agriculture Utsunomiya University Utsunomiya Tochigi Japan.
Background: In vitro fertilization (IVF) and embryo transfer (ET) are widely used in reproductive biology. Despite the transfer of high-quality blastocysts, the implantation rate of IVF-derived blastocysts remains low after ET.
Methods: This article provides a comprehensive review of current research on embryo implantation regulators and their application to improve the implantation potential of IVF-derived blastocysts.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!