Chronic wounds suffer from impaired healing due to microbial attack and poor vascular growth. Thermoresponsive hydrogels gained attention in wound dressing owing to their gelation at physiological temperature enabling them to take the shape of asymmetric wounds. The present study delineates the development of thermoresponsive hydrogel (MCK), from hair-derived keratin (K) and methylcellulose (MC) in the presence of sodium sulfate. The gelation temperature (T) of this hydrogel is in the range of 30 °C to 33 °C. Protein-polymer interaction leading to thermoreversible sol-gel transition involved in MCK blends has been analyzed and confirmed by FTIR, XRD, and thermal studies. Keratin, has introduced antioxidant properties to the hydrogel imparted cytocompatibility towards human dermal fibroblasts (HDFs) as evidenced by both MTT and live dead assays. In vitro wound healing assessment has been shown by enhanced migration of HDFs in the presence of MCK hydrogel compared to the control. Also, CAM assay and CD31 expression by the Wistar rat model has shown increased blood vessel branching after the implantation of MCK hydrogel. Further, in vivo study, demonstrated MCK efficacy of hydrogel in accelerating full-thickness wounds with minimal scarring in Wistar rats, re-epithelialization, and reinstatement of the epidermal-dermal junction thereby exhibiting clinical relevance for chronic wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.130073DOI Listing

Publication Analysis

Top Keywords

hydrogel accelerating
8
accelerating full-thickness
8
wound healing
8
chronic wounds
8
mck hydrogel
8
hydrogel
7
mck
5
thermoresponsive keratin-methylcellulose
4
keratin-methylcellulose self-healing
4
self-healing injectable
4

Similar Publications

Tissue engineering and regenerative medicine have made significant breakthroughs in creating complex three-dimensional (3D) constructs that mimic human tissues. This progress is largely driven by the development of hydrogels, which enable the precise arrangement of biomaterials and cells to form structures resembling native tissues. Gelatin-based bioinks are widely used in wound healing due to their excellent biocompatibility, biodegradability, non-toxicity, and ability to accelerate extracellular matrix formation.

View Article and Find Full Text PDF

CMCS-PVA@CA hydrogel dressing: A promoter of wound healing with MRSA virulence attenuation function.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Jilin University, Changchun 130062, PR China. Electronic address:

Traditional wound dressings, primarily centered on antimicrobial or bactericidal strategies, have inadvertently contributed to the rise of drug-resistant bacterial colonies at wound sites, thus prolonging the healing process. In this study, we developed an innovative hydrogel dressing, CMCS-PVA@CA, incorporating carboxymethyl chitosan (CMCS), polyvinyl alcohol (PVA), and cichoric acid (CA), specifically designed to treat skin wounds infected with methicillin-resistant Staphylococcus aureus (MRSA). Computational biology analyses reveal that CA exerts substantial anti-virulence activity by targeting serine/threonine phosphatase (Stp1), achieving an IC of 3.

View Article and Find Full Text PDF

Click hydrogels to assess stiffness-induced activation of pancreatic cancer-associated fibroblasts and its impact on cancer cell spreading.

Chembiochem

January 2025

Purdue University College of Engineering, Weldon School of Biomedical Engineering, 723 W. Michigan St., SL 220K, IN 46202, Indianapolis, UNITED STATES OF AMERICA.

Pancreatic ductal adenocarcinoma (PDAC) is marked by significant desmoplastic reactions, or the accumulation of excessive extracellular matrices. PDAC stroma has abnormally high stiffness, which alters cancer cell behaviors and creates a barrier for effective drug delivery. Unfortunately, clinical trials using a combination of chemotherapy and matrix-degrading enzyme have led to disappointing results, as the degradation of stromal tissue likely accelerated the dissemination of cancer cells.

View Article and Find Full Text PDF

The management of bacterial wounds presents a significant challenge in the field of medicine and poses a grave threat to public health. Traditional gauze materials exhibit limited efficacy in treating bacterial infection wounds, while antibiotics demonstrate cytotoxicity and resistance. Therefore, in this study, the peptide biomimetic polymer (PAL-BA) was designed and served as the antibacterial framework for constructing an antibiotic drug-free antibacterial hydrogel dressing through a Schiff base reaction with oxidized hyaluronic acid (OHA).

View Article and Find Full Text PDF

Physiological wound healing process can restore the functional and structural integrity of skin, but is often delayed due to external disturbance. The development of methods for promoting the repair process of skin wounds represents a highly desired and challenging goal. Here, a flexible, self-powered, and multifunctional triboelectric nanogenerator (TENG) wound patch (e-patch) is presented for accelerating wound healing through the synergy of electrostimulation and photothermal effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!