Background: Chronic obstructive pulmonary disease (COPD) is defined by persistent airway and lung inflammation, excessive mucus production, remodeling of the airways, and damage to the alveolar tissue. Based on clinical experience, it has been observed that Jianpiyifei II (JPYF II) granules exhibit a significant therapeutic impact on individuals suffering from stable COPD. Nevertheless, the complete understanding of JPYF II's potential mode of action against COPD remains to be further clarified.
Purpose: To further investigate the underlying mechanism of JPYF II for treating COPD and clarify the role of the IL-17 pathway in the treatment.
Methods: A variety of databases were utilized to acquire JPYF II's bioactive components, as well as related targets of JPYF II and COPD. Cytoscape was utilized to establish multiple interaction networks for the purpose of topological analyses and core-target screening. The Metascape was utilized to identify the function of target genes and crucial signaling pathways. To evaluate the interactions between bioactive ingredients and central target proteins, molecular docking simulations were conducted. Following that, a sequence of experiments was conducted both in the laboratory and in living organisms, which included analyzing the cell counts in bronchoalveolar lavage fluid (BALF), examining lung tissue for histopathological changes, conducting immunohistochemistry, RT‒qPCR, ELISA, and Western blotting.
Results: In JPYF II, 88 bioactive ingredients were predicted to have a total of 342 targets. After conducting Venn analysis, it was discovered that 284 potential targets of JPYF II were linked to the provision of defensive benefits against COPD. The PPI network yielded a total of twenty-four core targets. The findings from the analysis of enrichment and gene‒pathway network suggested that JPYF II targeted Hsp90, MAPKs, ERK, AP-1, TNF-α, IL-6, COX-2, CXCL8, and MMP-9 as crucial elements for COPD treatment through the IL-17 pathway. Additionally, JPYF II might modulate MAPK signaling pathways and the downstream transcription factor AP-1 via IL-17 regulation. According to the findings from molecular docking, it was observed that the 24 core target proteins exhibited robust binding affinities towards the top 10 bioactive compounds. Furthermore, the treatment of COPD through the regulation of MAPKs in the IL-17 pathway was significantly influenced by flavonoids and sterols found in JPYF II. In vitro, these observations were further confirmed. In vivo results demonstrated that JPYF II reduced inflammatory cell infiltration in pulmonary tissues and the quantity of inflammatory cells in BALF obtained from LPS- and CS-stimulated mice. Moreover, the administration of JPYF II resulted in the inhibition of IL-17 mRNA and protein levels, phosphorylation levels of MAPK proteins, and expression of phosphorylated AP-1 proteins. It also suppressed the expression of downstream effector genes and proteins associated with the IL-17/MAPK/AP-1 signaling axis in lung tissues and BALF.
Conclusion: This research reveals that JPYF II improves COPD by controlling the IL-17/MAPK/AP-1 signaling axis within the IL-17 pathway for the first time. These findings offer potential approaches for the creation of novel medications that specifically target IL-17 and proteins involved in the IL-17 pathway to address COPD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2023.155273 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!