Pesticide avermectin-induced hepatotoxicity and growth inhibition in carp: Ameliorative capacity and potential mechanisms of quercetin as a dietary additive.

Aquat Toxicol

Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China. Electronic address:

Published: March 2024

Flavonoid quercetin (QUE) has biological activities of anti-oxidation, anti-inflammation and anti-apoptosis, however, its protective effects against avermectin (AVM) induced liver toxicity in carp remains unclear. The objective of this research is to explore the biologically potent effects of QUE in AVM-induced hepatotoxicity in carp and its underlying mechanism. Therefore, we established a liver injury model in carp induced by AVM to evaluate QUE against AVM induced liver toxicity in carp. In this investigation, AVM dosage was determined as 2.404 μg/L for both groups, and an experimentation of 30 days duration was carried out. Various methods including hematoxylin and eosin (H&E) staining, biochemical kits, real-time quantitative PCR (qRT-PCR), western blotting, TUNEL, reactive oxygen species (ROS) staining, immunofluorescence (Hoseinifar, et al.,), and oil red O staining were used in this study. Results showed that the growth inhibition of carp was relieved in the QUE treatment group comparing to the AVM group. In the QUE treatment group, there was a significant decrease in the levels of ALT and AST in carp liver tissue. Additionally, the histopathological damage and lipid accumulation were alleviated compared to the AVM group. Moreover, QUE prevented AVM induced decrease in the activities of antioxidant enzymes of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), glutathione (GSH), catalase (CAT) and the accumulation of reactive oxygen species (ROS), but reduced accumulation of malondialdehyde (MDA). In addition, the mRNA levels of liver pro-inflammatory factors of tumor necrosis factor-α (TNF-α), interleukin-1β (iL-1β), interleukin-6 (iL-6), interleukin-10 (iL-10) and the protein levels of NOD-like receptor protein 3 (NLRP3) inflammasome were significantly down-regulated in the QUE treatment group in comparison to the AVM group. We also found that QUE could affect the expression of Bcl2-associated x (Bax), B-cell lymphoma-2 (Bcl-2), cleaved-cysteinyl aspartate specific proteinase (CCaspase3) key apoptotic proteins and TUNEL-labeled apoptotic hepatocytes by regulating SIRT1/FOXO3a signal pathway. In summary, QUE alleviated the growth inhibition, liver oxidative damage, lipid accumulation, inflammatory response, and apoptosis of carp induced by AVM. QUE is a potential protective agent against liver injury induced by AVM in carp.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2024.106859DOI Listing

Publication Analysis

Top Keywords

growth inhibition
12
avm induced
12
induced avm
12
treatment group
12
avm group
12
avm
10
carp
9
inhibition carp
8
induced liver
8
liver toxicity
8

Similar Publications

Isolation and identification of the causal agent of gummy stem blight disease in Cucumis sativus caused by a bacterial pathogen in China.

Sci Rep

January 2025

College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.

Recently, a new bacterial disease was detected on cucumber stalks. In order to study the pathogenesis of this disease, the pathogenic bacteria were isolated and identified on the basis of morphological and molecular characteristics, and further analyzed for pathogenicity and antagonistic evaluation. Pathogenicity analysis showed that HlJ-3 caused melting decay and cracking in cucumber stems, and the strain reisolated from re-infected cucumber stalks was morphologically identical to HlJ-3 colonies, which is consistent with the Koch's postulates.

View Article and Find Full Text PDF

Psoriasis is a long-lasting inflammatory skin condition characterized by excessive keratinocyte growth. Recent studies have confirmed abnormal regulation of microRNAs (miRNAs/miRs) in individuals with psoriasis. This study aimed to investigate the function and specific mechanism of action of miR-128a-3p in interleukin-22 (IL-22)-stimulated HaCaT cells.

View Article and Find Full Text PDF

Berberine (BBR) has been proved to inhibit the malignant progression of non-small cell lung cancer (NSCLC), but the underlying molecular mechanism still needs to be further revealed. NSCLC cells (A549 and H1299) were treated with BBR. CCK8 assay, colony formation assay, flow cytometry, TUNEL staining and transwell assay were used to examine cell proliferation, apoptosis and invasion.

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA), a highly aggressive form of cancer, is known for its high mortality rate. A Disintegrin and Metalloprotease Domain-like Protein Decysin-1 (ADAMDEC1) can promote the development and metastasis in various tumors by degrading the extracellular matrix. However, its regulatory mechanism in CCA remains unclear.

View Article and Find Full Text PDF

Background: The healthcare sector faces a growing threat from the rise of highly resistant microorganisms, particularly Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDR P. aeruginosa). Facing the challenge of antibiotic resistance, nanoparticles have surfaced as promising substitutes for antimicrobial therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!