Simulations of water pollutants in the Hangzhou Bay, China: Hydrodynamics, characteristics, and sources.

Mar Pollut Bull

Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo, China; Institute of East China Sea, Ningbo University, Ningbo, China.

Published: March 2024

China's coastal waters are confronting serious water quality problems, particularly the Hangzhou Bay in the Yangtze River Delta. To find out the underlying cause, we use the Regional Ocean Modeling System (ROMS) to simulate the hydrodynamic characteristics and the evolution of water pollutants. The results show that the hydrodynamic conditions are complicated and the semi-exchange time is 46 days, significantly hindering the dilution and diffusion of water pollutants. Concentrations of each typical pollutant as chemical oxygen demand (COD), dissolved inorganic nitrogen (DIN), and phosphate (PO) decrease from west to east, showing an obvious enrichment in the coastal region. Source-oriented results show that the inland water pollution of the Yangtze River and the Qiantang River is the key contributor, and the sewage outfalls on the coast near the bay worsen the pollution. This suggests that the government needs to strengthen the management of sources that affect water security.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2024.116140DOI Listing

Publication Analysis

Top Keywords

water pollutants
12
hangzhou bay
8
yangtze river
8
water
5
simulations water
4
pollutants hangzhou
4
bay china
4
china hydrodynamics
4
hydrodynamics characteristics
4
characteristics sources
4

Similar Publications

UV-Aged Nanoplastics Increase Mercury Toxicity in a Marine Copepod under Multigenerational Exposure: A Carrier Role.

Environ Sci Technol

January 2025

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.

Aged plastics possess diverse interactive properties with metals compared to pristine ones. However, the role of aging for nanoplastics (NPs) in being a carrier of mercury (Hg), a common marine environmental pollutant, and their combined effects remain unclear. This study investigated the carrier effect of ultraviolet-aged NPs on Hg and the ensuing toxicity in a marine copepod under a multigenerational scenario.

View Article and Find Full Text PDF

The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.

View Article and Find Full Text PDF

Simultaneous Copper and EDTA Ligands Recovery from Electroless Effluent with Metallic Copper and Formaldehyde.

Environ Sci Technol

January 2025

Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.

The traditional treatment of toxic and refractory copper(II)-ethylenediaminetetraacetic acid chelate (Cu(II)-EDTA) in electroless effluents often generates hazardous waste and secondary nitrogen-containing pollutants without maximizing the resource recovery. This study demonstrates a facile strategy to simultaneously recover Cu and EDTA ligands from Cu(II)-EDTA electroless effluent with commercially available metallic Cu and formaldehyde. In this strategy, metallic Cu is used to activate formaldehyde, a prevalent yet often overlooked cocontaminant in Cu(II)-EDTA effluents, to produce highly reductive hydrogen radical (H), which in situ decomplex Cu(II)-EDTA, reduces the central Cu(II) into metallic Cu, and release EDTA ligand.

View Article and Find Full Text PDF

Cu-doped waste-tire carbon as catalyst for UV/HO oxidation of ofloxacin.

J Environ Manage

January 2025

School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China. Electronic address:

Ofloxacin (OFX), commonly employed in the treatment of infectious diseases, is frequently detected in aquatic environments and poses potential ecological risks. UV/HO oxidation has been recognized as an efficient approach for removing antibiotics. In this study, Cu-doped waste-tire carbon was prepared and used as a UV/HO catalyst for the degradation of OFX.

View Article and Find Full Text PDF

Performance, kinetics, and mechanism of 1,2,3-trimethylbenzene biodegradation by a newly isolated marine microalga.

J Environ Manage

January 2025

Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.

Recently, marine pollution by the accidental spills of C9 aromatics has raised public concerns, especially for 1,2,3-trimethylbenzene (1,2,3-TMB) because it is high-toxic and refractory. However, insufficient understanding of molecular mechanism underlying the biodegradation of 1,2,3-TMB hindered research on its bioremediation. In addition, microalgae-mediated bioremediation is popular due to its eco-friendliness and carbon sequestration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!