Generation of induced pluripotent stem cell line (VRISGi004-A) from a healthy female donor by reprogramming erythroid progenitor cells.

Stem Cell Res

Hi-Tech Center, Vinmec Healthcare System, Hanoi, Viet Nam; College of Health Sciences, VinUnivesity, Hanoi, Viet Nam; Vinmec-VinUni Institute of Immunology, Viet Nam. Electronic address:

Published: April 2024

We generated a human induced pluripotent stem cell (hiPSC) line from erythroid progenitor cells (EPCs) of a 20-year-old female healthy donor using Sendai virus vector encoding Yamanaka factors OCT3/4, SOX2, c-MYC, and KLF4. The established hiPSCs showed a standard morphology and expression of typical undifferentiated stem cell markers, a normal karyotype (46, XX), and demonstrated potential for differentiation in vitro. Furthermore, they were successfully differentiated into cardiomyocytes that expressed cardiomyocyte-specific markers. The iPSC line and iPSC-derived cardiomyocytes will provide new avenues for future drug testing/development and personalized cell therapy for cardiovascular diseases (CVDs).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2024.103331DOI Listing

Publication Analysis

Top Keywords

stem cell
12
induced pluripotent
8
pluripotent stem
8
erythroid progenitor
8
progenitor cells
8
generation induced
4
cell
4
cell vrisgi004-a
4
vrisgi004-a healthy
4
healthy female
4

Similar Publications

Evaluation of Silica and Bioglass Nanomaterials in Pulp-like Living Materials.

ACS Biomater Sci Eng

January 2025

Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Paris 75252, France.

Although silicon is a widespread constituent in dental materials, its possible influence on the formation and repair of teeth remains largely unexplored. Here, we studied the effect of two silicic acid-releasing nanomaterials, silica and bioglass, on a living model of pulp consisting of dental pulp stem cells seeded in dense type I collagen hydrogels. Silica nanoparticles and released silicic acid had little effect on cell viability and mineralization efficiency but impacted metabolic activity, delayed matrix remodeling, and led to heterogeneous cell distribution.

View Article and Find Full Text PDF

Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated cancer, and immune checkpoint inhibitors (ICIs) have shown efficacy in its treatment. The combination of chemotherapy and ICIs represents a new trend in the standard care for metastatic NPC. In this study, we aim to clarify the immune cell profile and related prognostic factors in the ICI-based treatment of metastatic NPC.

View Article and Find Full Text PDF

Speed breeding advancements in safflower ( L.): a simplified and efficient approach for accelerating breeding programs.

Mol Breed

January 2025

Department of Agricultural Biotechnology, Genome and Stem Cell Center, Erciyes University, Kayseri, 38280 Türkiye.

This study investigated the potential of extended irradiation combined with immature embryo culture techniques to accelerate generation advancements in safflower ( L.) breeding programs. We developed an efficient speed breeding method by applying light-emitting diodes (LEDs) that emit specific wavelengths, alongside the in vitro germination of immature embryos under controlled environmental conditions.

View Article and Find Full Text PDF

Rare Cell Population Analysis in Early-Stage Breast Cancer Patients.

Breast Cancer (Auckl)

January 2025

Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

Background: Circulating rare cells participate in breast cancer evolution as systemic components of the disease and thus, are a source of theranostic information. Exploration of cancer-associated rare cells is in its infancy.

Objectives: We aimed to investigate and classify abnormalities in the circulating rare cell population among early-stage breast cancer patients using fluorescence marker identification and cytomorphology.

View Article and Find Full Text PDF

Aims: Diabetes mellitus (DM) induces increased inflammation of atherosclerotic plaques, resulting in elevated plaque instability. Mesenchymal stem cell (MSC) therapy was shown to decrease plaque size and increase stability in non-DM animal models. We now studied the effect of MSC therapy in a streptozotocin-induced hyperglycaemia mouse model using a clinically relevant dose of adipose tissue-derived MSCs (ASCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!