The gametophytic epigenetic regulators, MEA and DME, extend their synergistic role to the sporophytic development by regulating the meristematic activity via restricting the gene expression in the shoot apex. The gametophyte-to-sporophyte transition facilitates the alternation of generations in a plant life cycle. The epigenetic regulators DEMETER (DME) and MEDEA (MEA) synergistically control central cell proliferation and differentiation, ensuring proper gametophyte-to-sporophyte transition in Arabidopsis. Mutant alleles of DME and MEA are female gametophyte lethal, eluding the recovery of recessive homozygotes to examine their role in the sporophyte. Here, we exploited the paternal transmission of these mutant alleles coupled with CENH3-haploid inducer to generate mea-1;dme-2 sporophytes. Strikingly, the simultaneous loss of function of MEA and DME leads to the emergence of ectopic shoot meristems at the apical pole of the plant body axis. DME and MEA are expressed in the developing shoot apex and regulate the expression of various shoot-promoting factors. Chromatin immunoprecipitation (ChIP), DNA methylation, and gene expression analysis revealed several shoot regulators as potential targets of MEA and DME. RNA interference-mediated transcriptional downregulation of shoot-promoting factors STM, CUC2, and PLT5 rescued the twin-plant phenotype to WT in 9-23% of mea-1;dme-2 plants. Our findings reveal a previously unrecognized synergistic role of MEA and DME in restricting the meristematic activity at the shoot apex during sporophytic development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-024-03159-1DOI Listing

Publication Analysis

Top Keywords

mea dme
16
epigenetic regulators
12
shoot apex
12
gametophytic epigenetic
8
ectopic shoot
8
synergistic role
8
sporophytic development
8
meristematic activity
8
gene expression
8
gametophyte-to-sporophyte transition
8

Similar Publications

High-dose Agomelatine Combined with Haloperidol Decanoate Improves Cognition, Downregulates MT2, Upregulates D5, and Maintains Krüppel-like Factor 9 But Alters Cardiac Electrophysiology.

J Pharmacol Exp Ther

June 2024

Departments of Medical Pharmacology (S.A., A.Y.), Medical Biochemistry and Molecular Biology (M.A.), Pathology (M.S.I.N.), and Medical Physiology (M.A.E.), Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt; and Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Sohag University, Sohag, Egypt (D.M.E.A.).

Haloperidol decanoate (HD) has been implicated in cognitive impairment. Agomelatine (AGO) has been claimed to improve cognition. We aimed at investigating the effects of HD + low- or high-dose AGO on cognition, verifying the melatonergic/dopaminergic to the cholinergic hypothesis of cognition and exploring relevant cardiovascular issues in adult male Wistar albino rats.

View Article and Find Full Text PDF

Ultrafast Au(III)-Mediated Arylation of Cysteine.

J Am Chem Soc

May 2024

Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.

Through mechanistic work and rational design, we have developed the fastest organometallic abiotic Cys bioconjugation. As a result, the developed organometallic Au(III) bioconjugation reagents enable selective labeling of Cys moieties down to picomolar concentrations and allow for the rapid construction of complex heterostructures from peptides, proteins, and oligonucleotides. This work showcases how organometallic chemistry can be interfaced with biomolecules and lead to a range of reactivities that are largely unmatched by classical organic chemistry tools.

View Article and Find Full Text PDF

The gametophytic epigenetic regulators, MEA and DME, extend their synergistic role to the sporophytic development by regulating the meristematic activity via restricting the gene expression in the shoot apex. The gametophyte-to-sporophyte transition facilitates the alternation of generations in a plant life cycle. The epigenetic regulators DEMETER (DME) and MEDEA (MEA) synergistically control central cell proliferation and differentiation, ensuring proper gametophyte-to-sporophyte transition in Arabidopsis.

View Article and Find Full Text PDF

Background: Polyploidy provides new genetic material that facilitates evolutionary novelty, species adaptation, and crop domestication. Polyploidy often leads to an increase in cell or organism size, which may affect transcript abundance or transcriptome size, but the relationship between polyploidy and transcriptome changes remains poorly understood. Plant cells often undergo endoreduplication, confounding the polyploid effect.

View Article and Find Full Text PDF

Discovery of Spiro Oxazolidinediones as Selective, Orally Bioavailable Inhibitors of p300/CBP Histone Acetyltransferases.

ACS Med Chem Lett

January 2018

Acylin Therapeutics, Inc., 1616 Eastlake Avenue E, Suite 200, Seattle, Washington 98012, United States.

p300 and its paralog CBP can acetylate histones and other proteins and have been implicated in a number of diseases characterized by aberrant gene activation, such as cancer. A novel, highly selective, orally bioavailable histone acetyltransferase (HAT) domain inhibitor has been identified through virtual ligand screening and subsequent optimization of a unique hydantoin screening hit. Conformational restraint in the form of a spirocyclization followed by substitution with a urea led to a significant improvement in potency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!