How fork-length asymmetry affects solvent connectivity and diffusion in grafted polymeric model membranes.

J Chem Phys

Private research, Sano 1107-2, Belle Crea 502, 410-1118 Susono, Japan.

Published: February 2024

AI Article Synopsis

  • The study simulates the structure and solvent diffusion of amphiphilic polymer membranes using dissipative particle dynamics (DPD), focusing on their hydrophilic pore morphology and how solvent interacts within this setup.
  • Five different polymer designs with varying side chain architectures (symmetric and asymmetric branching) are analyzed, revealing that more symmetrical side chains improve hydrophilic pore connectivity and enhance water transport.
  • The research indicates that the architecture of side chains directly affects the movement of water and protons in the membranes, suggesting that optimizing side chain designs can enhance the conductivity of these materials.

Article Abstract

The hydrophilic pore morphology and solvent diffusion within model (amphiphilic) polymer membranes are simulated by dissipative particle dynamics (DPD). The polymers are composed of a backbone of 18 covalently bonded A beads to which at regular intervals side chains are attached. The side chains are composed of linear Ap chains (i.e., -A1-A2…Ap) from which two branches, [AsC] and [ArC], split off (s ≤ r). C beads serve as functionalized hydrophilic pendent sites. The branch lengths (s + 1 and r + 1) are varied. Five repeat unit designs (with general formula A3[Ap[AsC][ArC]]) are considered: A2[A3C][A3C] (symmetric branching), A2[A2C][A4C], A2[AC][A5C], A2[C][A6C] (highly asymmetric branching), and A4[AC][A3C]. The distribution of water (W) and W diffusion through nanophase segregated hydrophilic pores is studied. For similar primary length p, an increase in side chain symmetry favors hydrophilic pore connectivity and long-range water transport. C beads located on the longer [ArC] branches reveal the highest C bead mobility and are more strongly associated with water than the C beads on the shorter [AsC] branches. The connectivity of hydrophilic (W and W + C) phases through mapped replica of selected snapshots obtained from Monte Carlo tracer diffusion simulations is in line with trends found from the W bead diffusivities during DPD simulations. The diffusive pathways for protons (H+) in proton exchange membranes and for hydronium (OH-) in anion exchange membranes are the same as for solvents. Therefore, control of the side chain architecture is an interesting design parameter for optimizing membrane conductivities.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0193120DOI Listing

Publication Analysis

Top Keywords

hydrophilic pore
8
side chains
8
side chain
8
exchange membranes
8
hydrophilic
5
fork-length asymmetry
4
asymmetry solvent
4
solvent connectivity
4
diffusion
4
connectivity diffusion
4

Similar Publications

Recent Advances in the Design and Application of Asymmetric Carbon-Based Materials.

Small Methods

January 2025

College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China.

Asymmetric carbon-based materials (ACBMs) have received significant attention in scientific research due to their unique structures and properties. Through the introduction of heterogeneous atoms and the construction of asymmetric ordered/disordered structures, ACBMs are optimized in terms of electrical conductivity, pore structure, and chemical composition and exhibit multiple properties such as hydrophilicity, hydrophobicity, optical characteristics, and magnetic behavior. Here, the recent research progress of ACBMs is reviewed, focusing on the potential of these materials for electrochemical, catalysis, and biomedical applications and their unique advantages over conventional symmetric carbon-based materials.

View Article and Find Full Text PDF

Hernia is characterized by the protrusion of organs or tissue through weakened areas in the abdominal cavity wall. A common treatment for hernia involves the implantation of a mesh which promotes the growth of new tissue around or within the implanted material in the damaged area. The mesh is typically made from synthetic materials like polypropylene.

View Article and Find Full Text PDF

Novel Ultrafiltration Polyethersulfone Membranes Blended with Carrageenan.

Polymers (Basel)

January 2025

Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar.

The development of ultrafiltration (UF) polymeric membranes with high flux and enhanced antifouling properties bridges a critical gap in the polymeric membrane fabrication research field. In the present work, the preparation of novel PES membranes incorporated with carrageenan (CAR), which is a natural polymer derived from edible red seaweed, is reported for the first time. The PES/CAR membranes were prepared by using the nonsolvent-induced phase separation (NIPS) method at 0.

View Article and Find Full Text PDF

Given the suboptimal physical properties and distinctive geological conditions of deep coalbed methane reservoirs, any reservoir damage that occurs becomes irreversible. Consequently, the protection of these deep coalbed methane reservoirs is of paramount importance. This study employs experimental techniques such as scanning electron microscopy, X-ray diffraction, and micro-CT imaging to conduct a comprehensive analysis of the pore structure, mineral composition, fluid characteristics, and wettability of coal seams 3# and 15# in the northern Qinshui Basin of China.

View Article and Find Full Text PDF

Nano-Metal-Organic Frameworks Isolated in Mesoporous Structures.

Adv Mater

January 2025

School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China.

As an alternative to bulk counterparts, metal-organic framework (MOF) nanoparticles isolated within conductive mesoporous carbon matrices are of increasing interest for electrochemical applications. Although promising, a "clean" carbon surface is generally associated with poor compatibility and weak interactions with metal/ligand precursors, which leads to the growth of MOFs with inhomogeneous particle sizes on outer pore walls. Here, a general methodology for in situ synthesis of eight nanoMOF composites within mesochannels with high dispersity and stability are reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!