Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It is a known and experimentally verified fact that the flow of pressure-driven nanoconfined fluids cannot be accurately described by the Navier-Stokes (NS) equations with non-slip boundary conditions, and the measured volumetric flow rates are much higher than those predicted by macroscopical continuum models. In particular, the flow enhancement factors (the ratio between the flow rates directly measured by experiments or simulations and those predicted by the non-slip NS equation) reported by previous studies have more than five orders of magnitude differences. We showcased an anomalous phenomenon in which the flow enhancement exhibits a non-monotonic correlation with fluid pressure within the carbon nanotube with a diameter of 2 nm. Molecular dynamics simulations indicate that the inconsistency of flow behaviors is attributed to the phase transition of nanoconfined fluid induced by fluid pressures. The nanomechanical mechanisms are contributed by complex hydrogen-bonding interactions and regulated water orientations. This study suggests a method for explaining the inconsistency of flow enhancements by considering the pressure-dependent molecular structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0179870 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!