A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pressure-dependent flow enhancement in carbon nanotubes. | LitMetric

Pressure-dependent flow enhancement in carbon nanotubes.

J Chem Phys

Key Laboratory of Coastal Environment and Resources of Zhejiang Province (KLaCER), School of Engineering, Westlake University, 600 Dunyu Rd., Hangzhou 310030, Zhejiang, China.

Published: February 2024

AI Article Synopsis

  • Traditional fluid dynamics (Navier-Stokes equations) fail to accurately predict the flow rates of nanoconfined fluids, resulting in discrepancies with experimental measurements of up to five orders of magnitude.
  • An unusual correlation was observed where the enhancement of fluid flow varies non-linearly with pressure in 2 nm diameter carbon nanotubes, indicating complex behavior not captured by standard models.
  • Molecular dynamics simulations suggest that these flow inconsistencies are due to phase transitions in the fluid caused by pressure, influenced by hydrogen bonding and water alignment, highlighting the importance of pressure-dependent molecular structures in understanding fluid behavior.

Article Abstract

It is a known and experimentally verified fact that the flow of pressure-driven nanoconfined fluids cannot be accurately described by the Navier-Stokes (NS) equations with non-slip boundary conditions, and the measured volumetric flow rates are much higher than those predicted by macroscopical continuum models. In particular, the flow enhancement factors (the ratio between the flow rates directly measured by experiments or simulations and those predicted by the non-slip NS equation) reported by previous studies have more than five orders of magnitude differences. We showcased an anomalous phenomenon in which the flow enhancement exhibits a non-monotonic correlation with fluid pressure within the carbon nanotube with a diameter of 2 nm. Molecular dynamics simulations indicate that the inconsistency of flow behaviors is attributed to the phase transition of nanoconfined fluid induced by fluid pressures. The nanomechanical mechanisms are contributed by complex hydrogen-bonding interactions and regulated water orientations. This study suggests a method for explaining the inconsistency of flow enhancements by considering the pressure-dependent molecular structures.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0179870DOI Listing

Publication Analysis

Top Keywords

flow enhancement
12
flow rates
8
inconsistency flow
8
flow
7
pressure-dependent flow
4
enhancement carbon
4
carbon nanotubes
4
nanotubes experimentally
4
experimentally verified
4
verified fact
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!