Many nocturnally active fireflies use precisely timed bioluminescent patterns to identify mates, making them especially vulnerable to light pollution. As urbanization continues to brighten the night sky, firefly populations are under constant stress, and close to half of the species are now threatened. Ensuring the survival of firefly biodiversity depends on a large-scale conservation effort to monitor and protect thousands of populations. While species can be identified by their flash patterns, current methods require expert measurement and manual classification and are infeasible given the number and geographic distribution of fireflies. Here we present the application of a recurrent neural network (RNN) for accurate automated firefly flash pattern classification. Using recordings from commodity cameras, we can extract flash trajectories of individuals within a swarm and classify their species with an accuracy of approximately seventy percent. In addition to its potential in population monitoring, automated classification provides the means to study firefly behavior at the population level. We employ the classifier to measure and characterize the variability within and between swarms, unlocking a new dimension of their behavior. Our method is open source, and deployment in community science applications could revolutionize our ability to monitor and understand firefly populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858911PMC
http://dx.doi.org/10.1038/s41598-024-53671-3DOI Listing

Publication Analysis

Top Keywords

firefly flash
8
flash pattern
8
firefly populations
8
firefly
5
embracing firefly
4
flash
4
pattern variability
4
variability data-driven
4
species
4
data-driven species
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!