A tokamak relies on the axisymmetric magnetic fields to confine fusion plasmas and aims to deliver sustainable and clean energy. However, misalignments arise inevitably in the tokamak construction, leading to small asymmetries in the magnetic field known as error fields (EFs). The EFs have been a major concern in the tokamak approaches because small EFs, even less than 0.1%, can drive a plasma disruption. Meanwhile, the EFs in the tokamak can be favorably used for controlling plasma instabilities, such as edge-localized modes (ELMs). Here we show an optimization that tailors the EFs to maintain an edge 3D response for ELM control with a minimized core 3D response to avoid plasma disruption and unnecessary confinement degradation. We design and demonstrate such an edge-localized 3D response in the KSTAR facility, benefiting from its unique flexibility to change many degrees of freedom in the 3D coil space for the various fusion plasma regimes. This favorable control of the tokamak EF represents a notable advance for designing intrinsically 3D tokamaks to optimize stability and confinement for next-step fusion reactors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858871 | PMC |
http://dx.doi.org/10.1038/s41467-024-45454-1 | DOI Listing |
J Med Eng Technol
December 2024
Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran.
Nowadays, photoplethysmograph (PPG) technology is being used more often in smart devices and mobile phones due to advancements in information and communication technology in the health field, particularly in monitoring cardiac activities. Developing generative models to generate synthetic PPG signals requires overcoming challenges like data diversity and limited data available for training deep learning models. This paper proposes a generative model by adopting a genetic programming (GP) approach to generate increasingly diversified and accurate data using an initial PPG signal sample.
View Article and Find Full Text PDFSci Rep
December 2024
School of Energy Science and Engineering, Central South University, Changsha, 410083, China.
A three-dimensional numerical model of the vacuum sintering furnace was established, combined with the custom program of temperature-voltage feedback regulation. Through simulationand experimental validation, the heating and holding stage as well as the thermal hysteresis phenomenon of the furnace were analyzed, a dimensionless quantity of hysteresis temperature difference was proposed and calculated, the distribution of the electric field and temperature uniformity of the furnace were discussed in detail, while the structural improvement approach was proposed based on simulation. The results show that: during the heating process, the maximum of thermal hysteresis temperature difference between the graphite cylinder and the heating tube is 0.
View Article and Find Full Text PDFEBioMedicine
December 2024
CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Centre for Physiology and Pharmacology, Medical University of Vienna; Vienna, Austria. Electronic address:
Background: High content imaging-based functional precision medicine approaches have been developed and successfully applied in the field of haemato-oncology. For rheumatoid arthritis (RA), treatment selection is still based on a trial-and-error principle, and biomarkers for patient stratification and drug response prediction are needed.
Methods: A high content, high throughput microscopy-based phenotyping pipeline for peripheral blood mononuclear cells (PBMCs) was developed, allowing for the quantification of cell type frequencies, cell type specific morphology and intercellular interactions from patients with RA (n = 65) and healthy controls (HC, n = 33).
J Comput Biol
December 2024
Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University, Toronto, Canada.
Image-to-image translation has gained popularity in the medical field to transform images from one domain to another. Medical image synthesis via domain transformation is advantageous in its ability to augment an image dataset where images for a given class are limited. From the learning perspective, this process contributes to the data-oriented robustness of the model by inherently broadening the model's exposure to more diverse visual data and enabling it to learn more generalized features.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Graduate School of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
The electronic nose is an increasingly useful tool in many fields and applications. Our thermal electronic nose approach, based on nanostructured metal oxide chemiresistors in a thermal gradient, has the advantage of being tiny and therefore integrable in portable and wearable devices. Obviously, a wise choice of the nanomaterial is crucial for the device's performance and should therefore be carefully considered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!