RNA G-quadruplexes (rG4s) are noncanonical secondary structures formed by guanine-rich sequences that are found in different regions of RNA molecules. These structures have been implicated in diverse biological processes, including translation, splicing, and RNA stability. Recent studies have suggested that rG4s play a role in the cellular response to stress. This review summarizes the current knowledge on rG4s under stress, focusing on their formation, regulation, and potential functions in stress response pathways. We discuss the molecular mechanisms that regulate the formation of rG4 under different stress conditions and the impact of these structures on RNA metabolism, gene expression, and cell survival. Finally, we highlight the potential therapeutic implications of targeting rG4s for the treatment of stress-related diseases through modulating cell survival.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tcb.2024.01.005 | DOI Listing |
J Comput Chem
January 2025
Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic.
Doxorubicin (DOX) is a widely used chemotherapeutic agent known for intercalating into DNA. However, the exact modes of DOX interactions with various DNA structures remain unclear. Using molecular dynamics (MD) simulations, we explored DOX interactions with DNA duplexes (dsDNA), G-quadruplex, and nucleosome.
View Article and Find Full Text PDFBiomolecules
January 2025
Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan.
Synthetic cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) are promising candidates for vaccine adjuvants, because they activate immune responses through the Toll-like receptor 9 (TLR9) pathway. However, unmodified CpG ODNs are quickly degraded by serum nucleases, and their negative charge hinders cellular uptake, limiting their clinical application. Our group previously reported that guanine-quadruplex (G4)-forming CpG ODNs exhibit enhanced stability and cellular uptake.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology and Science, Liverpool John Moores University, Liverpool L3 3AF, UK.
G-quadruplex (G4) DNAzymes with peroxidase activities hold potential for applications in biosensing. While these nanozymes are easy to assemble, they are not as efficient as natural peroxidase enzymes. Several approaches are being used to better understand the structural basis of their reaction mechanisms, with a view to designing constructs with improved catalytic activities.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Max Perutz Labs, Vienna Biocenter Campus, Vienna 1030, Austria.
RNA G-quadruplexes (rG4s), the four-stranded structures formed by guanine-rich RNA sequences, are recognized by regions in RNA-binding proteins (RBPs) that are enriched in arginine-glycine repeats (RGG motifs). Importantly, arginine and glycine are encoded by guanine-rich codons, suggesting that some RGG motifs may both be encoded by and interact with rG4s in autogenous messenger RNAs (mRNAs). By analyzing transcriptome-wide rG4 datasets, we show that hundreds of RGG motifs in humans are at least partly encoded by rG4s, with an increased incidence for longer RGG motifs (~10 or more residues).
View Article and Find Full Text PDFChembiochem
January 2025
Bose Institute - Centenary Campus, Biophysics, P-1/12 CIT Scheme VIIM, Kankurgachi, Centenary Campus, 700054, KOLKATA, INDIA.
The Rous sarcoma virus (RSV) is an onco-retrovirus that infects avian species such as the chicken (Gallus gallus). RSV is the first oncovirus to be described, and the oncogenic activity of this virus is related to the expression of a tyrosine kinase that induces carcinogenic transformation. Interestingly, we have noted that the RSV genome contains various potential G4-forming sequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!