Background: In anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), histopathological assessment of affected tissue is often necessary for diagnosis and assessment of disease extent. There is a requirement for validated non-invasive biomarkers to avoid the need for serial tissue biopsies.

Methods: A systematic review of scientific databases from 2012 until present was performed to identify studies fulfilling the inclusion criteria. Studies were assessed for quality using the Strengthening the Reporting of Observational Studies in Epidemiology checklist for cohort, case-control and cross-sectional studies and the Risk of Bias Assessment tool for Non-randomised Studies, or the Cochrane Risk of Bias tool 2.0 for randomised controlled trials. A descriptive synthesis of the data for non-invasive (blood-based or urinary) biomarkers of AAV-related disease activity and organ damage was performed.

Results: Twenty-two high quality studies were included. These articles reported the value of blood-based and urinary biomarkers including anti-neutrophil cytoplasmic antibodies, immune cells, complement factors, gene expression profiles, cytokines, chemokines and other proteins in the assessment of disease activity and/or organ damage in patients with AAV. Many of these biomarkers involve the alternative complement pathway, neutrophil activation and macrophage activation.

Conclusion: This is the first contemporary systematic review synthesising the value of non-invasive biomarkers of AAV-related disease activity and organ damage. The incorporation of individual markers in combined biomarker profiles might enhance clinical decision-making. Many unmet needs were identified; few studies involve oeosinophilic granulomatosis with polyangiitis and patients with childhood-onset AAV. Further validation of the candidate biomarkers is warranted in large prospective studies to bridge the existing knowledge gaps and apply precision health to systemic vasculitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862256PMC
http://dx.doi.org/10.1136/rmdopen-2023-003579DOI Listing

Publication Analysis

Top Keywords

disease activity
16
organ damage
16
non-invasive biomarkers
12
activity organ
12
systematic review
12
anca-associated vasculitis
8
anti-neutrophil cytoplasmic
8
assessment disease
8
studies
8
risk bias
8

Similar Publications

The success of targeted therapies in oncogene-driven cancer is limited by adaptive or acquired treatment resistance, leading to disease progression. A recent study reports that YAP-dependent HER3 activation constitutes a therapeutic vulnerability of adaptive resistance to RET-targeted therapies in RET-altered cancers, highlighting a promising strategy to improve RET-inhibitor tumor responses.

View Article and Find Full Text PDF

Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison.

View Article and Find Full Text PDF

Introduction: Dysmenorrhea is a painful symptom associated with uterine contractions and menstrual bleeding and is treated by administering analgesic drugs. Since progesterone receptors (PRs) have a major role in regulating uterine tissues (myometrium and endometrium) oral contraceptives are used off-label for treating primary or secondary dysmenorrhea. The development of selective progesterone receptor modulators (SPRMs) a class of synthetic steroids with agonistic, antagonistic, or mixed effects in targeting PRs in different tissues stimulated their possible clinical use for treating secondary dysmenorrhea related to uterine diseases (endometriosis, adenomyosis, uterine fibroids).

View Article and Find Full Text PDF

Study on the Synergistic Effect of Klotho and KRAS on Reducing Ferroptosis After Myocardial Infarction by Regulating RAP1/ERK Signaling Pathway.

Appl Biochem Biotechnol

January 2025

Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China.

Myocardial infarction (MI) is a coronary artery-related disease that seriously threatens human life and is the leading cause of sudden death worldwide, where a lack of nutrients and oxygen leads to an inflammatory response and death of cardiomyocytes. Ferroptosis is a form of non-apoptotic cell death associated with metabolic dysfunction, resulting in abnormal breakdown of glutamine and iron-dependent accumulation of reactive oxygen species (ROS) during metabolism. However, the molecular mechanism of ferroptosis in the pathogenesis of MI and the function of Klotho and KRAS on ferroptosis during MI remain unclear.

View Article and Find Full Text PDF

Purpose Of Review: The purpose of this review is to summarize the current understanding of cell-autonomous innate immune pathways that contribute to bone homeostasis and disease.

Recent Findings: Germ-line encoded pattern recognition receptors (PRRs) are the first line of defense against danger and infections. In the bone microenvironment, PRRs and downstream signaling pathways, that mount immune defense, interface intimately with the core cellular processes in bone cells to alter bone formation and resorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!