The present work describes the fabrication of the quaternary Zn-Cd-Sn-S nanostructure and its use in photocatalytic remediation of the biological contaminant pyrene from water resources. Nanostructures fabricated were characterized by XRD, UV-DRS, FTIR, DLS, EDX, and SEM. In addition, an agar well diffusion test was conducted to determine the antimicrobial activity. Zn-Cd-Sn-S (ZCSS) nanostructures were evaluated for their photocatalytic degrading potential by using pyrene as a model pollutant and evaluating the effects of parameters like initial pyrene concentration, nanocatalyst dosage, solution pH, and light sources during batch adsorption. Nanostructures had a size of 16.74 nm according to the XRD analysis. With a 300 min time interval, ZCSS nanostructures achieved the highest removal rate of 86.3%. Pyrene degradation metabolites were identified using GC-MS analysis of the degraded samples. A Freundlich isothermal (R 0.9) and pseudo-first-order (R 0.952) reaction kinetic path best fit the adsorption results for pyrene by the fabricated ZCSS nanostructure, based on the adsorption and kinetic studies. Zn-Cd-Sn-S exhibited the highest antibacterial activity against Staphylococcusaureus (22.4 mM). Due to the combined synergistic actions of the constituent metals, this quaternary nanostructure exhibited exceptional photocatalytic activity. To our est knowledge, the ZCSS nanostructure was made and used to remove pyrene by photocatalysis and fight microbes. Ultimately, the ZCSS nanostructure was found to be an effective photocatalyst for eradicating pathogenic microbes from water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2024.118350 | DOI Listing |
Environ Res
June 2024
School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea. Electronic address:
The present work describes the fabrication of the quaternary Zn-Cd-Sn-S nanostructure and its use in photocatalytic remediation of the biological contaminant pyrene from water resources. Nanostructures fabricated were characterized by XRD, UV-DRS, FTIR, DLS, EDX, and SEM. In addition, an agar well diffusion test was conducted to determine the antimicrobial activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!