Inflammation is the primary driver of skeletal muscle wasting, with oxidative stress serving as both a major consequence and a contributor to its deleterious effects. In this regard, regulation of both can efficiently prevent atrophy and thus will increase the rate of survival [1]. With this idea, we hypothesize that preincubation of Cinnamaldehyde (CNA), a known compound with anti-oxidative and anti-inflammatory properties, may be able to prevent skeletal muscle loss. To examine the same, C2C12 post-differentiated myotubes were treated with 25 ng/ml Tumor necrosis factor-alpha (TNF-α) in the presence or absence of 50 μM CNA. The data showed that TNF-α mediated myotube thinning and a lower fusion index were prevented by CNA supplementation 4 h before TNF-α treatment. Moreover, a lower level of ROS and thus maintained antioxidant defense system further underlines the antioxidative function of CNA in atrophic conditions. CNA preincubation also inhibited an increase in the level of inflammatory cytokines and thus led to a lower level of inflammation even in the presence of TNF-α. With decreased oxidative stress and inflammation by CNA, it was able to maintain the intracellular level of injury markers (CK, LDH) and SDH activity of mitochondria. In addition, CNA modulates all five proteolytic systems [cathepsin-L, UPS (atrogin-1), calpain, LC3, beclin] simultaneously with an upregulation of Akt/mTOR pathway, in turn, preserves the muscle-specific proteins (MHCf) from degradation by TNF-α. Altogether, our study exhibits attenuation of muscle loss and provides insight into the possible mechanism of action of CNA in curbing TNF-α induced muscle loss, specifically its effect on proteolysis and protein synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2024.109922DOI Listing

Publication Analysis

Top Keywords

muscle loss
16
skeletal muscle
12
oxidative stress
12
tnf-α induced
8
protein synthesis
8
stress inflammation
8
cna
8
lower level
8
tnf-α
7
muscle
5

Similar Publications

Biallelic pathogenic variants in the nebulin ( ) gene lead to the congenital muscle disease nemaline myopathy. In-frame deletion of exon 55 (ΔExon55) is the most common disease-causing variant in . Previously, a mouse model of was developed; however, it presented an uncharacteristically severe phenotype with a near complete reduction in transcript expression that is not observed in exon 55 patients.

View Article and Find Full Text PDF

Background: Cachexia is defined by chronic loss of fat and muscle, is a frequent complication of pancreatic ductal adenocarcinoma (PDAC), and negatively impacts patient outcomes. Nutritional supplementation cannot fully reverse tissue wasting, and the mechanisms underlying this phenotype are unclear. This work aims to define the relative contributions of catabolism and anabolism to adipose wasting in PDAC-bearing mice.

View Article and Find Full Text PDF

Persisting deficits are often seen years after an Achilles tendon rupture despite dedicated rehabilitation efforts. A possible reason for reduced function is elongation of the tendon and accompanying shortening of the muscle. Strength training with focus on the eccentric component of loading leads to longer muscle fascicles in healthy persons.

View Article and Find Full Text PDF

Aβ40 Fibril Assembly on Human Cerebral Smooth Muscle Cells Impairs Cell Viability.

Biochemistry

January 2025

George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmacological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States.

Cerebral vascular deposition of the amyloid-β (Aβ) peptide, a condition known as cerebral amyloid angiopathy (CAA), is associated with intracerebral hemorrhaging and contributes to disease progression in Alzheimer's disease (AD) and vascular cognitive impairment and dementia (VCID). Familial mutations at positions 22 and 23 within the Aβ peptide lead to early onset and severe CAA pathology. Here, we evaluate the effects of fibrillar Aβ peptides on the viability of primary-cultured human cerebral smooth muscle (HCSM) cells, which are the major site of amyloid deposition in cerebral blood vessel walls.

View Article and Find Full Text PDF

Macrophage Immunometabolism - Emerging Targets for Regrowth in Aging Muscle.

Am J Physiol Endocrinol Metab

January 2025

Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, 84112.

The recovery from muscle atrophy is impaired with aging as characterized by improper muscle remodeling and sustained functional deficits. Age-related deficits in muscle regrowth are tightly linked with the loss of early pro-inflammatory macrophage responses and subsequent cellular dysregulation within the skeletal muscle niche. Macrophage inflammatory phenotype is regulated at the metabolic level, highlighting immunometabolism as an emerging strategy to enhance macrophage responses and restore functional muscle regrowth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!