Industrializable approach for preparing hydrogel microneedles and their application in melanoma treatment.

Int J Pharm

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; Beijing CAS Microneedle Technology Ltd, Beijing 102609, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, 266112 Qingdao, China. Electronic address:

Published: March 2024

Microneedles (MNs) technology has been studied in transdermal drug delivery for more than 20 years with hundreds of clinical trials conducted. However, there are currently no commercially available MNs in medicine due to challenges in materials safety, cost-effective fabrication, and large-scale manufacturing. Herein, an approach for rapid and green fabrication of hydrogel microneedles (HMNs) based on infrared irradiation process was proposed for the first time. The optimized formulation consisted of polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP), which acted as cross-linked materials and pore-forming agents, respectively. The manufacturing method involved placing MNs patches under infrared irradiation at 70 °C for 2 min and annealing to obtain HMNs with excellent swelling behavior, mechanical strength, and biocompatibility. When model drugs azelaic acid (AZA) and matrine (MAT) were loaded into HMNs systems, the chemical stability of MAT was significantly improved. Ex vivo transdermal delivery experiments indicated that HMNs could achieve synchronous release of AZA and MAT, and the 24-hour percutaneous permeability rates of both drugs were 73.09 ± 0.48 % and 71.56 ± 1.23 %, respectively. In-vivo pharmacokinetic studies, HMNs administration presented dose-dependent stable blood drug concentrations for both drugs. Additionally, prominent anti-tumor efficacy and biosecurity were observed in the drug-loaded HMNs group in the pharmacodynamic evaluation. In summary, the efficient, convenient, and low-cost fabrication method based on infrared irradiation offers the possibility of mass production of drug-loaded HMNs, showing potential for industrial manufacturing development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2024.123883DOI Listing

Publication Analysis

Top Keywords

infrared irradiation
12
hydrogel microneedles
8
based infrared
8
drug-loaded hmns
8
hmns
7
industrializable approach
4
approach preparing
4
preparing hydrogel
4
microneedles application
4
application melanoma
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!