AI Article Synopsis

  • * Recycling PET using nanotechnology presents solutions by enhancing degradation processes and improving recycling efficiency, potentially turning waste into valuable products.
  • * The review examines the effects of micro/nano plastics on ecosystems, recent methods for PET degradation, and the potential applications of modified PET waste in creating energy storage devices like batteries and sensors.

Article Abstract

Poly(ethylene terephthalate) (PET) plastic is an omnipresent synthetic polymer in our lives, which causes negative impacts on the ecosystem. It is crucial to take mandatory action to control the usage and sustainable disposal of PET plastics. Recycling plastics using nanotechnology offers potential solutions to the challenges associated with traditional plastic recycling methods. Nano-based degradation techniques improve the degradation process through the influence of catalysts. It also plays a crucial role in enhancing the efficiency and effectiveness of recycling processes and modifying them into value-added products. The modified PET waste plastics can be utilized to manufacture batteries, supercapacitors, sensors, and so on. The waste PET modification methods have massive potential for research, which can play major role in removing post-consumer plastic waste. The present review discusses the effects of micro/nano plastics in terrestrial and marine ecosystems and its impacts on plants and animals. Briefly, the degradation and bio-degradation methods in recent research were explored. The depolymerization methods used for the production of monomers from PET waste plastics were discussed in detail. Carbon nanotubes, fullerene, and graphene nanosheets synthesized from PET waste plastics were delineated. The reuse of nanotechnologically modified PET waste plastics for potential green energy storage products, such as batteries, supercapacitors, and sensors were presented in this review.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.141417DOI Listing

Publication Analysis

Top Keywords

pet waste
16
waste plastics
16
pet
8
plastics
8
pet plastics
8
green energy
8
modified pet
8
batteries supercapacitors
8
supercapacitors sensors
8
waste
6

Similar Publications

Wastewater treatment plants (WWTPs) are one of the major collection points of microplastics (MPs). The MPs in influents and effluents of WWTPs were assessed for three cities on the southern coast of the Caspian Sea in the winter and spring seasons. The MP removal rate of WWTPs ranged between 71.

View Article and Find Full Text PDF

Polyethylene Terephthalate (PET) is a petroleum-based plastic polymer that, by design, can last decades, if not hundreds of years, when released into the environment through plastic waste leakage. In the pursuit of sustainable solutions to plastic waste recycling and repurposing, the enzymatic depolymerization of PET has emerged as a promising green alternative. However, the metabolic potential of the resulting PET breakdown molecules, such as the two-carbon (C2) molecule ethylene glycol (EG), remains largely untapped.

View Article and Find Full Text PDF

The study assessed a developed food-safe on-package label as a real-time spoilage indicator for fish fillets. This colorimetric sensor is sensitive to Total Volatile Base Nitrogen (TVB-N) levels, providing a correct indication of fish freshness and spoilage. This study evaluates and predicts the shelf-life and effectiveness of an on-package colorimetric indicator.

View Article and Find Full Text PDF

One-Pot Depolymerization of Mixed Plastics Using a Dual Enzyme System.

ChemSusChem

December 2024

Universität Greifswald: Universitat Greifswald, Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, GERMANY.

As global plastic consumption and littering escalate, innovative approaches to sustainable waste management are crucial. Enzymatic depolymerization has emerged as a promising recycling method for polyesters via monomer recovery under mild conditions. However, current research mainly focuses on using a single plastic feedstock, which can only be derived from complex and costly plastic waste sorting.

View Article and Find Full Text PDF

Towards polyethylene terephthalate valorisation into PHB using an engineered Comamonas testosteroni strain.

N Biotechnol

December 2024

Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), C/ Ramiro de Maeztu 9, Madrid E-28040, Spain. Electronic address:

The abundant production of plastic materials, coupled with their recalcitrant nature, makes plastic waste a major challenge as a pollutant. Polyethylene terephthalate (PET) is a polyester formed by polycondensation of terephthalic acid (TPA) and ethylene glycol (EG). This plastic polymer can be completely depolymerized to its monomers using microbial enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!