Xuetongsu attenuates bone destruction in collagen-induced arthritis mice by inhibiting osteoclast differentiation and promoting osteoclast apoptosis.

Int J Biochem Cell Biol

TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China. Electronic address:

Published: April 2024

Tujia ethnomedicine Xuetong (the stems of Kadsura heteroclita) have been widely used in folk for rheumatoid arthritis (RA), which can alleviate rheumatic pain through liquor soaking in folk. In this study, we aimed to evaluate the pharmacological effects and underlying mechanism of Xuetongsu (a key chemical component of Xuetong) on bone destruction. In our previous study, it was found that Xuetong extract can reduce adjuvant arthritic rats paw swelling and inhibit inflammatory factors in serum. Furthermore, Xuetongsu has been demonstrated to inhibit the proliferation of fibroblast-like synoviocytes, but its potential to inhibit bone destruction has not been explored. To address this, we employed the STRING database to predict protein interactions and utilized Autodock software to simulate the binding of Xuetongsu to target proteins. In this study, administration of Xuetongsu significantly alleviated paw swelling and bone destruction in C57BL/6 mice with collagen-induced arthritis (CIA). Mechanistic studies have indicated that Xuetongsu promotes apoptosis of mature osteoclasts in joint tissues by activating Caspase-3 and Bax, while inhibiting Bcl-2. Additionally, Xuetongsu inhibits osteoclast differentiation by suppressing RANKL, RANK, P-NF-κB, and NFATc1, and reduces bone resorption activity by inhibiting MMP-9, CTSK, and TRAP. Importantly, Xuetongsu exhibits good biocompatibility in major organs of mice. In summary, Xuetongsu has the potential to treat bone destruction by promoting apoptosis of mature osteoclasts, inhibiting osteoclast differentiation, and reducing bone resorption. This study reveals the pharmacological effects of Xuetongsu and its mechanism of action, which may contribute to the development of novel approaches for treating RA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2024.106550DOI Listing

Publication Analysis

Top Keywords

bone destruction
20
osteoclast differentiation
12
xuetongsu
10
collagen-induced arthritis
8
inhibiting osteoclast
8
pharmacological effects
8
paw swelling
8
apoptosis mature
8
mature osteoclasts
8
bone resorption
8

Similar Publications

Chondromyxoid fibroma of distal phalanx of great toe: a rare case report with literature review.

Int J Burns Trauma

December 2024

Department of Orthopaedic Surgery, J.N. Medical College, Faculty of Medicine, A.M.U. Aligarh, UP, India.

Chondromyxoid fibroma (CMF) in the foot is a rare condition. We report a case of CMF in a 7-year-old girl, affecting the distal phalanx of the great toe. Radiographs revealed a lytic lesion involving the entire distal phalanx, with destruction of both the medial and lateral cortices, while the articular surfaces remained intact.

View Article and Find Full Text PDF

Objective: Removal of a transcutaneous osseintegrated endo-fix stem (ESKA Orthopaedic, Lübeck, Germany) following a fatigue fracture of the implant, whilst protecting the residual femur bone to allow transcutaneous osseointegrated prosthesis system (TOPS) reimplantation.

Indications: A patient's request for a further TOPS implantation following a fatigue fracture of a circular osseointegrated implant stem.

Contraindications: Impending destruction of the bone tube through mobilisation of the femoral implant stem with insufficient thickness of the cortical wall (< 2-3 mm).

View Article and Find Full Text PDF

Food allergy is a complex disease, with multiple environmental factors involved. Considering the regulatory effect of toxin A (Tcd A) on biological processes of allergic reactions, the role of oral exposure to Tcd A on food allergy was investigated. The intestinal permeability and β-hexosaminidase were promoted by Tcd A using the in vitro Caco-2 and HT-29 cells coculture monolayer and bone marrow-derived mast cell (MCs) degranulation model.

View Article and Find Full Text PDF

Molecular mechanism of mitochondrial autophagy mediating impaired energy metabolism leading to osteoporosis.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.

Osteoporosis (OP) is a bone metabolic disease caused by decreased bone mass leading to destruction of bone microstructure. Treatment of OP is characterized by a lifelong nature, causing extreme financial and psychological burdens to patients. Hormonal abnormalities, cellular autophagy, Ferroptosis, and oxidative stress are all part of the intricate and varied pathophysiology of OP.

View Article and Find Full Text PDF

Advances in tissue engineering and microfluidic technologies have enabled the development of sophisticated models known as organ-on-a-chip (OoC) or microphysiological systems. These systems enable to potential to simulate the dynamic interactions between host tissues and their microenvironment including microbes, biomaterials, mechanical forces, pharmaceutical, and consumer-care products. These fluidic technologies are increasingly being utilized to investigate host-microbe and host-material interactions in oral health and disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!