The water-soluble chitosan derivative (WSCD) was made by mixing chitosan with sodium hydroxide, treating the mixture with chloroacetic acid, and then forming a Schiff base with vanillin in an acidic medium. In this study, we examined the corrosion-inhibiting ability of a WSCD on mild steel surfaces in acidic environments. Weight loss, EIS, PDP, LPS, and OCP measurements were used to study the corrosion resistance on mild steel surfaces in 1 M HCl solutions with known concentrations of WSCD. The results show that WSCD functions effectively as a mixed-type anodic and cathodic inhibitor, providing 87 % corrosion inhibition efficiency at 75 ppm. Using SEM to investigate the morphology of corroded mild steel with and without varying amounts of WSCD, impedance measurements show the development of a thin film of inhibitor on the metal surface, the extent of which increases as the inhibitor concentration rises. The WSCD molecule first adsorbs on mild steel and follows Langmuir adsorption isotherm. It is found that the (∆G)adsorption's free energy is -17.473 kJ/mol. The contact angle measurements confirm that the hydrophobicity of the metal surface has increased as a result of the inhibitor's thin film development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.130024 | DOI Listing |
ChemistryOpen
December 2024
Laboratory of Advanced Materials and Process Engineering, Faculty of Science, University Ibn Tofail, University Street, Kenitra, B.P 242, Morocco.
The corrosion of metals in acidic environments remains a significant challenge, driving the search for sustainable and eco-friendly inhibitors derived from natural sources. This study evaluates the corrosion inhibition potential of three extracts from Cannabis sativa L., namely ethanol extract (EET), hexane extract (EHX), and dichloromethane extract (EDM), for mild steel in a 1 M HCl acidic medium.
View Article and Find Full Text PDFLangmuir
December 2024
Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco.
This work involves the synthesis of two chitosan derivatives by reacting chitosan, extracted from shrimp shells in eastern Morocco, with 2-nitrobenzaldehyde via a Schiff base reaction. An amino derivative of chitosan was then produced by reducing the imine group created by sodium borohydride. We investigated the molecular weight (), crystallinity index (), and degree of deacetylation () of the isolated chitosan, among other characteristic features.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Considering the demand for the construction of a sustainable future, it is essential to endow the conventional thermoset silicone adhesive with reuse capability and recyclability. Although various research attempts have been made by incorporating reversible linkages, developing sustainable silicone adhesives by natural linkers is still challenging, as the interface between the natural linker and the silicone is historically difficult. We exploited the possibility of utilizing -lipoic acid, a natural linker, to construct a sustainable silicone adhesive.
View Article and Find Full Text PDFHeliyon
December 2024
Integrated Materials Chemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
This work evaluates the effectiveness of Schiff base derivatives, namely, 2,2'-((1E,1'E)-((2,2-dimethylpropane-1,3-diyl)bis(azaneylylidene))bis(methaneylylidene))diphenol (DAMD) and (2-((E)-((3-(((E)-2-hydroxybenzylidene)amino)-2,2dimethylpropyl)imino)methyl)phenoxy) zinc (HDMZ), as corrosion inhibitors for mild steel in a 15 % HCl solution. By employing a blend of experimental assessments and theoretical computations, such as electrochemical tests, morphological observations, and theoretical simulations, the study achieved an impressive up to 94.6 % inhibition efficiency.
View Article and Find Full Text PDFData Brief
December 2024
Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India.
Machining process involves numerous variables that can influence the desired outcomes, with surface roughness being a critical quality index for machined products. Surface roughness is often a technical requirement for mechanical products as it can lead to chatter and impact the functional performance of parts, especially those in contact with other materials. Therefore, predicting surface roughness is essential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!