Modeling and assessing the impacts of climate change on groundwater recharge in endorheic basins of Northwest China.

Sci Total Environ

Key Laboratory of Ecohydrology of Inland River Basin, Qilian Mountains Eco-environment Research Center in Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Published: March 2024

Climate change imposing additional stressors on groundwater resources globally, thereby predicting groundwater recharge (GR) changes is crucial to sustainably managing water resources, especially in the arid endorheic basins. Groundwater in the Endorheic Basins of Northwest China (NWEB) is potentially impacting regional socio-economic output and ecosystem stability due to the imbalance between supply and extraction exacerbated by climate change. Hence, recognizing the impacts of climate change on past and future GR is imperative for groundwater supply and sustainable groundwater management in the NWEB. Here, the impact of historical (1971-2020) and projected (2021-2100) climate changes on GR across the entire NWEB and three distinctive landscape regions (i.e., mountainous, oasis, and desert) were assessed. A coupled distributed hydrologic model (CWatM-HBV model), which integrates the Community Water Model (CWatM) and the HBV model, was run with three shared socioeconomic pathways (SSP1-2.6, SSP2-4.5, and SSP3-7.0) forcing from 10 general circulation models (GCMs) to simulate and analyze the interannual and seasonal variations of GR, along with their driving factors. Over the past 50 years, both precipitation and runoff have undergone significant increases, and leading to a dramatic rise in GR (0.09 mm yr). The future annual growth rate of GR is projected to range from 0.01 to 0.09 mm yr from SSP1-2.6 to SSP3-7.0 across the entire NWEB, with the majority of the increase expected during the spring and summer seasons, driven by enhanced precipitation. GR from the mountainous region is the primary source (accounting for approximately 56-59 %) throughout the NWEB with the greatest increase anticipated. Precipitation and runoff have significant influences on GR in mountainous areas, and the impact of precipitation on GR is expected to increase over time. Changes in GR in oasis and desert areas are mainly limited by precipitation variation and increase in the SSP2-4.5 and SSP3-7.0 scenario. Additionally, the processes of glacial retreat and permafrost degradation will complicate the GR dynamics although the process is largely interfered with by anthropogenic environmental changes, especially in oasis-desert systems. The average annual recharge in the NWEB was 8.9 mm in the historical period and 13.6 ± 4.1 mm in the future. Despite an increase in GR due to climate change, groundwater storage is likely to continue to decline due to complex water demands in the NWEB. This study highlights the significance of future precipitation changes for GR and contributes to the understanding of the influence of climate change on groundwater systems and advances the sustainable management of water resources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.170829DOI Listing

Publication Analysis

Top Keywords

climate change
24
change groundwater
12
endorheic basins
12
impacts climate
8
groundwater
8
groundwater recharge
8
basins northwest
8
northwest china
8
water resources
8
entire nweb
8

Similar Publications

The side-chain directions in nonfullerene acceptors (NFAs) strongly influence the intermolecular interactions in NFAs; however, the influence of these side chains on the morphologies and charge carrier dynamics of Y6-based acceptors remains underexplored. In this study, we synthesize four distinct Y6-based acceptors, i.e.

View Article and Find Full Text PDF

Background: Climate change poses a significant risk to kidney health, and countries with lower national wealth are more vulnerable. Yet, citizens from lower-income countries demonstrate less concern for climate change than those from higher-income countries. Education is a key covariate.

View Article and Find Full Text PDF

Diversity and dynamics of multiple symbionts contribute to early development of broadcast spawning reef-building coral .

Appl Environ Microbiol

January 2025

CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.

Sexual reproduction and recruitment enhance the genetic diversity and evolution of reef-building corals for population recovery and coral reef conservation under climate change. However, new recruits are vulnerable to physical changes and the mechanisms of symbiosis establishment remain poorly understood. Here, , a broadcast spawning hermaphrodite reef-building coral, was subjected to settlement and juvenile growth in flow-through seawater at 27.

View Article and Find Full Text PDF

Identifying segment-specific barriers to ordering environmentally sustainable plant-based meat dishes in restaurants.

J Sustain Tour

April 2024

Faculty of Business, Economics and Law, The University of Queensland, Business School, St Lucia, Queensland, Australia.

Eating less meat when dining out can help mitigate climate change. Plant-based meats can facilitate the transition to a more environmentally sustainable tourism sector. However, uptake of these products remains low.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!