Biological interactions control bacterial but not fungal β diversity during vegetation degradation in saline-alkaline soil.

Sci Total Environ

State Key Laboratory of Black Soils Conservation and Utilization & Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station & Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China. Electronic address:

Published: April 2024

The patterns and mechanisms by which soil bacterial and fungal community β-diversity respond to vegetation degradation in saline-alkaline soils are currently not clear, and in particular, the role of biotic interactions is relatively unknown. To investigate the assembly of bacterial and fungal communities in topsoil (0-10 cm) in saline-alkaline soils at different stages of vegetation degradation, the β-Mean Nearest Classification Unit Distance, the β-Nearest Taxon Index, and the Raup-Crick index were calculated. The relative importance of biotic and environmental factors in controlling β diversity under deterministic processes was also quantified by using relative importance analyses. The β diversity of soil bacterial and fungal communities responded differently in different stages of vegetation degradation in saline-alkaline soils, with bacterial β diversity increasing with increasing vegetation degradation but fungal β diversity showing few differences. Deterministic processes regulated soil bacterial community assembly, and biotic factors were important in driving changes in β diversity, whereas both deterministic and stochastic processes were essential in soil fungal community assembly, and environmental factors were important in affecting fungal β diversity. Furthermore, fungal β diversity is far more affected by interactions between fungus and bacteria than bacteria. Our study demonstrates the different effects of vegetation degradation on bacterial and fungal communities in saline soils to provide the overall implications for saline soils microorganisms in deteriorating ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.170826DOI Listing

Publication Analysis

Top Keywords

vegetation degradation
24
bacterial fungal
20
fungal diversity
16
degradation saline-alkaline
12
soil bacterial
12
saline-alkaline soils
12
fungal communities
12
fungal
9
diversity
8
fungal community
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!