Indoor air quality is crucial for human health due to the significant time people spend at home, and it is mainly affected by internal sources such as solid fuel combustion for heating. This study investigated the indoor air quality and health implications associated with residential coal burning covering gaseous pollutants (CO, CO and total volatile organic compounds), particulate matter, and toxicity. The PM chemical composition was obtained by ICP-MS/OES (elements), ion chromatography (water-soluble ions) and thermal-optical analysis (organic and elemental carbon). During coal combustion, PM levels were higher (up to 8.8 times) than background levels and the indoor-to-outdoor ratios were, on average, greater than unity, confirming the existence of a significant indoor source. The chemical characterisation of PM revealed increased concentrations of organic carbon and elemental carbon during coal combustion as well as arsenic, cadmium and lead. Carcinogenic risks associated with exposure to arsenic exceeded safety thresholds. Indoor air quality fluctuated during the study, with varying toxicity levels assessed using the Aliivibrio fischeri bioluminescence inhibition assay. These findings underscore the importance of mitigating indoor air pollution associated with coal burning and highlight the potential health risks from long-term exposure. Effective interventions are needed to improve indoor air quality and reduce health risks in coal-burning households.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.170598DOI Listing

Publication Analysis

Top Keywords

indoor air
20
air quality
16
coal combustion
12
residential coal
8
combustion levels
8
chemical composition
8
coal burning
8
elemental carbon
8
carbon coal
8
health risks
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!